位置:中冶有色 >
> 形貌可控且高度分散氟化鎂的制備及方法研究
[1] | Zhang, L., Han, P., Zhang, C., Dong, M., Yang, Y. and Gu, X. (2011) Density Functional Theory Study on the Stability and Electronic Properties of MgF2 Surfaces. Acta Physico-Chimica Sinica, 27, 1609-1614. |
[2] | Xu, H. and Lv, J. (2002) Synthesis of Difluoromethane over Magnesium Fluoride (MgF2) Based Catalyst. Industrial Catalysis, 5, 10. |
[3] |
Nakamura, F., Kato, T., Okada, G., Kawano, N., Kawaguchi, N., Fukuda, K. and Yanagida, T. (2018) Scintillation, Dosimeter and Optical Properties of MgF2 Transparent Ceramics Doped with Gd3+. Materials Research Bulletin, 98, 83-88. https://doi.org/10.1016/j.materresbull.2017.09.058 |
[4] |
Chen, F., Yuan, L. and Johnston, R.L. (2012) Low-Loss Optical Magnetic Metamaterials on Ag-Au Bimetallic Fishnets. Journal of Magnetism and Magnetic Materials, 324, 2625-2630. https://doi.org/10.1016/j.jmmm.2012.03.025 |
[5] |
Agirrezabal-Telleria, I., Guo, Y., Hemmann, F., Arias, P.L. and Kemnitz, E. (2014) Dehydration of Xylose and Glucose to Furan Derivatives Using Bifunctional Partially Hydroxylated MgF2 Catalysts and N2-Stripping. Catalysis Science & Technology, 4, 1357-1368. https://doi.org/10.1039/C4CY00129J |
[6] |
Ji, Z., Hao, L., Wang, H. and Chen, R. (2019) Analysis and Research on the Formative Factors and Properties of Nano-MgF2 Crystals with Different Morphologies. Polyhedron, 157, 136-145. https://doi.org/10.1016/j.poly.2018.09.061 |
[7] |
Sevonkaev, I. and Matijevic, E. (2009) Formation of Magnesium Fluoride Particles of Different Morphologies. Langmuir, 25, 10534-10539. https://doi.org/10.1021/la901307t |
[8] |
Nandiyanto, A.B., Iskandar, F., Ogi, T. and Okuyama, K. (2010) Nanometer to Submicrometer Magnesium Fluoride Particles with Controllable Morphology. Langmuir, 26, 12260-12266. https://doi.org/10.1021/la101194w |
[9] |
Krishna Murthy, J., Gro?, U., Rüdiger, S., Kemnitz, E. and Winfield, J.M. (20060 Sol-Gel-Fluorination Synthesis of Amorphous Magnesium Fluoride. Journal of Solid State Chemistry, 179, 739-746.
https://doi.org/10.1016/j.jssc.2005.11.033 |
[10] |
Xu, Z., Kang, X., Li, C., Hou, Z., Zhang, C., Yang, D., Li, G. and Lin, J. (2010) Ln(3+) (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) Nano/Microcrystals with Multiform Morphologies: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. Inorganic Chemistry, 49, 6706-6715. https://doi.org/10.1021/ic100953m. |
[11] |
Ji, Z., Bao, L., Wang, H. and Chen, R. (2017) Preparation of Super-Hydrophobic Antireflective Films by Rod-Like MgF2 and SiO2 Mixed Sol. Materials Letters, 207, 21-24. https://doi.org/10.1016/j.matlet.2017.07.050 |
[12] |
Nandiyanto, A.B., Ogi, T. and Okuyama, K. (2014) Control of the Shell Structural Properties and Cavity Diameter of Hollow Magnesium Fluoride Particles. ACS Applied Materials & Interfaces, 6, 4418-4427.
https://doi.org/10.1021/am500139m |
[13] |
Pietrowski, M. and Wojciechowska, M. (2007) Microwave-Assisted Synthesis of Spherical Monodispersed Magnesium Fluoride. Journal of Fluorine Chemistry, 128, 219-223. https://doi.org/10.1016/j.jfluchem.2006.12.009 |
[14] |
Karthik, D., Pendse, S., Sakthivel, S., Ramasamy, E. and Joshi, S.V. (2017) High Performance Broad Band Antireflective Coatings Using a Facile Synthesis of Ink-Bottle Mesoporous MgF2 Nanoparticles for Solar Applications. Solar Energy Materials & Solar Cells, 2017, 159, 204-211. https://doi.org/10.1016/j.solmat.2016.08.007 |
[15] |
Hou, S., Zou, Y., Liu, X., Yu, X., Liu, B., Sun, X. and Xing, Y. (2011) CaF2 and CaF2:Ln3+ (Ln = Er, Nd, Yb) Hierarchical Nanoflowers: Hydrothermal Synthesis and Luminescent Properties. CrystEngComm, 13, 835-840.
https://doi.org/10.1039/C0CE00396D |
[16] |
Yang, N., Zhang, L., Yan, C., Wang, X., Wang, N., Chen, D.L., Wang, S. and Zhu, W. (2020) Preparation of CaF2 Microspheres with Nanopetals for Water Vapor Adsorption. Langmuir, 36, 5369-5376.
https://doi.org/10.1021/acs.langmuir.0c00763 |
[17] |
Wang, Y., Zeng, D., Dai, Y., Fang, C., Han, X., Zhang, Z., Cao, X. and Liu, Y. (2020) The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution. Water, Air, & Soil Pollution, 231, Article No. 464.
https://doi.org/10.1007/s11270-020-04817-2 |
[18] |
Kemnitz, E. (2015) Nanoscale Metal Fluorides: A New Class of Heterogeneous Catalysts. Catalysis Science & Technology, 5, 786-806. https://doi.org/10.1039/C4CY01397B |
[19] | Zhang, L., Han, P., Zhang, C., Dong, M., Yang, Y. and Gu, X. (2011) Density Functional Theory Study on the Stability and Electronic Properties of MgF2 Surfaces. Acta Physico-Chimica Sinica, 27, 1609-1614. |
[20] | Xu, H. and Lv, J. (2002) Synthesis of Difluoromethane over Magnesium Fluoride (MgF2) Based Catalyst. Industrial Catalysis, 5, 10. |
[21] |
Nakamura, F., Kato, T., Okada, G., Kawano, N., Kawaguchi, N., Fukuda, K. and Yanagida, T. (2018) Scintillation, Dosimeter and Optical Properties of MgF2 Transparent Ceramics Doped with Gd3+. Materials Research Bulletin, 98, 83-88. https://doi.org/10.1016/j.materresbull.2017.09.058 |
[22] |
Chen, F., Yuan, L. and Johnston, R.L. (2012) Low-Loss Optical Magnetic Metamaterials on Ag-Au Bimetallic Fishnets. Journal of Magnetism and Magnetic Materials, 324, 2625-2630. https://doi.org/10.1016/j.jmmm.2012.03.025 |
[23] |
Agirrezabal-Telleria, I., Guo, Y., Hemmann, F., Arias, P.L. and Kemnitz, E. (2014) Dehydration of Xylose and Glucose to Furan Derivatives Using Bifunctional Partially Hydroxylated MgF2 Catalysts and N2-Stripping. Catalysis Science & Technology, 4, 1357-1368. https://doi.org/10.1039/C4CY00129J |
[24] |
Ji, Z., Hao, L., Wang, H. and Chen, R. (2019) Analysis and Research on the Formative Factors and Properties of Nano-MgF2 Crystals with Different Morphologies. Polyhedron, 157, 136-145. https://doi.org/10.1016/j.poly.2018.09.061 |
[25] |
Sevonkaev, I. and Matijevic, E. (2009) Formation of Magnesium Fluoride Particles of Different Morphologies. Langmuir, 25, 10534-10539. https://doi.org/10.1021/la901307t |
[26] |
Nandiyanto, A.B., Iskandar, F., Ogi, T. and Okuyama, K. (2010) Nanometer to Submicrometer Magnesium Fluoride Particles with Controllable Morphology. Langmuir, 26, 12260-12266. https://doi.org/10.1021/la101194w |
[27] |
Krishna Murthy, J., Gro?, U., Rüdiger, S., Kemnitz, E. and Winfield, J.M. (20060 Sol-Gel-Fluorination Synthesis of Amorphous Magnesium Fluoride. Journal of Solid State Chemistry, 179, 739-746.
https://doi.org/10.1016/j.jssc.2005.11.033 |
[28] |
Xu, Z., Kang, X., Li, C., Hou, Z., Zhang, C., Yang, D., Li, G. and Lin, J. (2010) Ln(3+) (Ln = Eu, Dy, Sm, and Er) ion-doped YVO(4) Nano/Microcrystals with Multiform Morphologies: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties. Inorganic Chemistry, 49, 6706-6715. https://doi.org/10.1021/ic100953m. |
[29] |
Ji, Z., Bao, L., Wang, H. and Chen, R. (2017) Preparation of Super-Hydrophobic Antireflective Films by Rod-Like MgF2 and SiO2 Mixed Sol. Materials Letters, 207, 21-24. https://doi.org/10.1016/j.matlet.2017.07.050 |
[30] |
Nandiyanto, A.B., Ogi, T. and Okuyama, K. (2014) Control of the Shell Structural Properties and Cavity Diameter of Hollow Magnesium Fluoride Particles. ACS Applied Materials & Interfaces, 6, 4418-4427.
https://doi.org/10.1021/am500139m |
[31] |
Pietrowski, M. and Wojciechowska, M. (2007) Microwave-Assisted Synthesis of Spherical Monodispersed Magnesium Fluoride. Journal of Fluorine Chemistry, 128, 219-223. https://doi.org/10.1016/j.jfluchem.2006.12.009 |
[32] |
Karthik, D., Pendse, S., Sakthivel, S., Ramasamy, E. and Joshi, S.V. (2017) High Performance Broad Band Antireflective Coatings Using a Facile Synthesis of Ink-Bottle Mesoporous MgF2 Nanoparticles for Solar Applications. Solar Energy Materials & Solar Cells, 2017, 159, 204-211. https://doi.org/10.1016/j.solmat.2016.08.007 |
[33] |
Hou, S., Zou, Y., Liu, X., Yu, X., Liu, B., Sun, X. and Xing, Y. (2011) CaF2 and CaF2:Ln3+ (Ln = Er, Nd, Yb) Hierarchical Nanoflowers: Hydrothermal Synthesis and Luminescent Properties. CrystEngComm, 13, 835-840.
https://doi.org/10.1039/C0CE00396D |
[34] |
Yang, N., Zhang, L., Yan, C., Wang, X., Wang, N., Chen, D.L., Wang, S. and Zhu, W. (2020) Preparation of CaF2 Microspheres with Nanopetals for Water Vapor Adsorption. Langmuir, 36, 5369-5376.
https://doi.org/10.1021/acs.langmuir.0c00763 |
[35] |
Wang, Y., Zeng, D., Dai, Y., Fang, C., Han, X., Zhang, Z., Cao, X. and Liu, Y. (2020) The Adsorptive Ability of 3D Flower-Like Titanium Phosphate for U(VI) in Aqueous Solution. Water, Air, & Soil Pollution, 231, Article No. 464.
https://doi.org/10.1007/s11270-020-04817-2 |
[36] |
Kemnitz, E. (2015) Nanoscale Metal Fluorides: A New Class of Heterogeneous Catalysts. Catalysis Science & Technology, 5, 786-806. https://doi.org/10.1039/C4CY01397B |