亚洲欧美国产精品粉嫩|亚洲精品精品无码专区|国产在线无码精品电影网|午夜无码久久久久久国产|亚洲国产精品一区二区动图|国产在线精品一区在线观看|欧美伊人久久久久久久久影院|中文字幕日韩av在线一区二区

合肥金星智控科技股份有限公司
宣傳

位置:中冶有色 >

有色技術頻道 >

> 合金材料技術

> AlNbMoZrB系難熔高熵合金的Kr離子輻照損傷行為

AlNbMoZrB系難熔高熵合金的Kr離子輻照損傷行為

1020   編輯:中冶有色技術網(wǎng)   來源:毛建軍,富童,潘虎成,滕常青,張偉,謝東升,吳璐  
2024-04-17 10:25:11
研制清潔、安全和高效的核能系統(tǒng)(如超高溫反應堆,快反應堆等)是能源領域的熱點問題,但是傳統(tǒng)核結構材料在新型堆惡劣的高溫、強輻照、強腐蝕服役環(huán)境中產(chǎn)生輻照硬化、腫脹、氫脆和輻照應力腐蝕[1,2] 由四種及四種以上元素組成的高熵合金(HEAs),具有獨特的多主元效應和優(yōu)異的力學性能 研究表明,HEAs獨特的微觀結構使其具有優(yōu)異的抗輻照性能[3,4] 同時,調控成分和結構可使HEAs滿足特定應用場景的性能要求[5,6]

目前,對HEAs的研究主要聚焦于面心立方(FCC)及體心立方(BCC)結構HEAs 與具有良好延展性的FCC型HEAs相比[6],BCC型HEAs多由Ti、Nb、Hf、Mo、Zr、V、Ta和W等難熔元素組成,結構的影響使其室溫塑性較差[9~11],但是優(yōu)異的高溫力學性能可滿足核結構材料的嚴苛要求[12~15] 在難熔高熵合金(RHEAs)中添加Nb、Mo、Zr等元素,可使其基體形成穩(wěn)定的BCC結構[16,17] 一些非難熔元素(Al、B、Si和Ni等)的添加,可進一步提高其綜合性能[18] 在HEAs中添加Al元素可生成復雜氧化物,使其抗高溫氧化能力提高[19~21] 可燃毒物B元素具有高中子吸收截面(750 barns),將其引入可在時間上補償初期堆芯過剩反應并在空間上平衡功率分布,為RHEAs作為長循環(huán)堆芯燃料包殼或彌散燃料的惰性基體提供了可能 Kang等[22]在Al0.1CrNbVMo RHEA中摻入B,使其力學性能顯著提高

評估核應用前景的關鍵因素,包括對合金輻照損傷行為和機理的研究 本文在AlNbMoZr中添加硼(B)元素制備一種具有可燃毒物特性的新型BCC結構Al5-Nb40-Mo40-Zr15-B0.1 RHEAs(簡稱AlNbMoZrB),研究其Kr離子輻照損傷行為

1 實驗方法

使用水冷銅坩堝電弧熔煉法(在高純氬氣保護下)制備難熔高熵合金Al5-Nb40-Mo40-Zr15-B0.1(原子分數(shù),簡稱AlNbMoZrB)鑄錠 原料中的Nb、Mo、Al、Zr等金屬的純度高于99.9%(質量分數(shù)),B元素以AlB3的形式添加 熔煉合金鑄錠前,先熔煉一遍Ti錠以吸收電弧爐內(nèi)的殘余氧氣 合金錠至少翻轉熔煉6次,每次熔煉時長不少于5 min,以確保成分均勻

用于測試和分析的所有樣品,均使用線切自鑄錠的中間部分割取 實驗前用400#至5000#砂紙逐級打磨觀察面,然后用粒徑50 nm的SiO2拋光液進行機械拋光至表面鏡面光滑

使用電子萬能試驗機完成室溫壓縮試驗 壓縮試樣是直徑為4 mm、長度為6 mm的圓柱,壓縮應變速率設置為1×10-3 s-1,重復三次試驗以保證結果的準確性,根據(jù)所得的數(shù)據(jù)畫出試樣的壓縮應力應變曲線 測定XRD譜以分析合金相結構及晶格畸變,用Cu-Kα靶材產(chǎn)生的X射線為射線源,掃描速度為6 (°)/min,2θ范圍為20°~100° 用SEM的背散射電子模式(FEG-SEM, Zeiss Sigma HD)及能譜儀(EDS)分析合金的相結構及元素分布

使用LC-4離子注入器分別在室溫和300℃對拋光的AlNbMoZrB樣品進行Kr離子輻照,注入能量為4 MeV,最終注入量達到6×1015 ions/cm2 使用聚焦離子束(FIB)技術沿樣品輻照截面制備透射電子顯微鏡(TEM)樣品,其厚度約為50 nm,用TEM及配備的EDS探頭觀察并分析輻照誘導相變、位錯環(huán)、Kr泡等缺陷的演化 將樣品按相組成和輻照情況分區(qū)分別進行TEM及EDS表征 在不同溫度條件下,以研究經(jīng)Kr離子輻照后AlNbMoZrB合金的相組成和輻照誘導缺陷的演化

2 結果和討論2.1 AlNbMoZrB合金的力學性能和組成

對鑄態(tài)AlNbMoZrB合金進行室溫壓縮測試,結果如圖1a所示 可以看出,試樣的屈服強度約為1180 MPa,壓縮強度約為1274 MPa,塑性約為4.8% AlNbMoZrB合金的XRD譜如圖1b所示,根據(jù)特征衍射峰的位置可判斷合金由BCC結構的基體相和FCC結構的Al-Zr相組成

圖1



圖1鑄態(tài)AlNbMoZrB合金的壓縮應力-應變曲線和XRD譜

Fig.1Compressive stress-strain curves (a) and XRD spectrum (b) of as-cast AlNbMoZrB alloy

Table 1

表1

表1鑄態(tài)合金的室溫壓縮屈服強度、斷裂強度和壓縮率

Table 1Compression yield strength, fracture strength and compression ratio of as-cast and solid-solution alloys at room temperature

Alloy

σc0.2

/MPa



σp

/MPa



εp

/%

Al5Nb40Mo40Zr15B0.1-cast 1180 1274 4.8


根據(jù)結構或能量和經(jīng)驗參數(shù)可預測并分析高熵合金的相組成及其形成過程,其中價電子濃度(VEC)及混合焓(Hmix)

VEC=∑i=1NxiVECi

ΔHmix=∑i=1,i≠jn4ΔHijmixcicj

可用于判斷高熵合金固溶體相類型 式中xi 為第i個元素的原子分數(shù),VEC i 為第i個元素的VEC,ΔHijmix為第i和第j分量之間的混合焓,ci 、cj 分別為第i、j元素的原子分數(shù) VEC低于6.87時傾向于形成BCC單相結構,VEC高于8時傾向于形成FCC單相結構,;VEC為6.87~8時易形成FCC+BCC雙相結構[23],-11.6 kJ/mol<ΔHmix<3.2 kJ/mol時傾向于形成單相固溶體[24] 計算結果表明,AlNbMoZrB合金的VEC為5.15,但是合金中卻含有FCC結構Al-Zr相 這與Al、Zr元素之間的負混合焓(-51.5 kJ/mol)相關,二者間極小的混合焓值使合金的ΔHijmix降低到-15.3 kJ/mol,最終導致在含有Al、Zr元素的高熵合金中易于形成Al-Zr相 這表明,熱力學條件主導AlNbMoZrB合金相的形成

值得注意的是,B元素與Al、Nb、Mo、Zr元素的二元合金混合焓分別為0、-54 kJ/mol、-34 kJ/mol、-71 kJ/mol[25],但是在XRD譜中并沒有出現(xiàn)明顯的硼化物衍射峰 據(jù)此可以推測,B原子可能作為間隙原子溶于合金基體,從而引發(fā)晶格畸變并使合金的晶格常數(shù)增大

2.2 AlNbMoZrB合金的SEM形貌

圖2給出了鑄態(tài)AlNbMoZrB合金的SEM形貌及對應的EDS和XRD譜 可以看出,AlNbMoZrB合金具有典型的枝晶結構,可分為白色襯度的枝晶區(qū)和灰色襯度的枝晶間區(qū)(圖2a和2b) 同時,在枝晶間區(qū)內(nèi)還出現(xiàn)了少量黑色襯度的相組織 圖2c中標注的點A、B、C分別對應白、灰、黑三種襯度的相組織,其EDS結果列于表2(由于B元素屬于輕原子且名義含量僅為0.1%(原子分數(shù)),測得結果存在誤差,因此沒有標注B元素的含量) 由EDS結果可知,在枝晶區(qū)(點A)Nb、Mo和B元素富集,枝晶間區(qū)Al和Zr元素富集,且黑色枝晶間區(qū)(點C)Zr元素的濃度比灰色枝晶間區(qū)(點B)的高 結合XRD譜的表征結果可知,白色枝晶區(qū)即為BCC結構固溶體基體相,灰色枝晶間區(qū)和黑色枝晶間區(qū)分別為FCC結構Al-Zr相和HCP結構α-Zr相

圖2



圖2鑄態(tài)AlNbMoZrB合金的背散射圖、EDS面和點掃描圖

Fig.2Backscatter diagram, EDS mapping and point results of as-cast AlNbMoZrB alloy (a) (b) corresponding Backscatter images of as-cast AlNbMoZrB alloy, and (c) corresponding Backscatter, EDS mapping and point results image of typical dendritic region of as-cast AlNbMoZrB alloy

Table 2

表2

表2鑄態(tài)AlNbMoZrB合金的EDS點掃描結果

Table 2EDS point results of as-cast AlNbMoZrB alloy (atomic fraction, %)

Points Al Nb Mo Zr


Nominal composition

A (white dendrite rigon)

B (gray interdendritic rigon)

C (black interdendritic rigon)



5

2.06

15.65

14.67



40

46.89

19.97

19.43



40

42.31

27.88

6.62



15

8.74

36.50

59.28



為了更好地觀察B元素在合金中的分布,對AlNbMoZrB鑄態(tài)合金進行了低電壓模式掃描,圖3給出的EDS面掃描結果與高電壓模式下的結果一致 Al、Zr元素主要分布在枝晶間區(qū),而Nb、Mo、B元素主要分布在枝晶區(qū),且沒有生成硼化物 結合XRD譜的分析結果進一步證明,B元素以間隙原子的形式固溶在合金基體中

圖3



圖3鑄態(tài)AlNbMoZrB合金低電壓下的背散射圖和面掃圖

Fig.3Backscatter diagram, EDS mapping and point results of as-cast AlNbMoZrB alloy under low-voltage

2.3 AlNbMoZrB合金Kr離子輻照損傷行為

圖4給出了在室溫條件輻照樣品的TEM形貌 根據(jù)圖4可判斷在室溫和300℃輻照影響區(qū)的深度分別約為1200 nm及1300 nm 圖4a~c對應室溫輻照樣品的TEM圖像,其中a1~a3位置在輻照影響區(qū)內(nèi),a4~a6位置未受輻照影響,各點對應的EDS結果列于表3 其中,a3及a5區(qū)域Nb、Mo元素富集,a3區(qū)域所對應的TEM圖像和選區(qū)衍射譜(SAED)如圖4b所示,SAED圖像(沿[001]區(qū)軸)證明該位置對應BCC結構,因此a5、a3區(qū)域分別為輻照前后AlNbMoZrB合金枝晶區(qū)BCC結構基體相,枝晶區(qū)元素成分及晶體結構未發(fā)生變化 此外結合此前的SEM及XRD結果可知,a2、a6位置Al、Zr元素富集,對應枝晶間區(qū)Al-Zr相,而a1位置EDS結果顯示其Zr元素含量高達~71.4%,對應枝晶間區(qū)α-Zr相 圖4c中a1區(qū)域的TEM及SAED圖像呈現(xiàn)出典型非晶衍射花樣特征,證明在室溫離子輻照下的AlNbMoZrB合金發(fā)生了α-Zr相輻照誘導非晶化轉變 這些α-Zr相在高能離子輻照下,由于級聯(lián)碰撞產(chǎn)生的點缺陷使其有序結構受到破壞,無序化程度的累積最終使其發(fā)生非晶化轉變[26] 與高溫相比,室溫輻照條件下點缺陷復合速率較低,系統(tǒng)自由能易于升高,因此非晶化轉變的臨界輻照劑量降低,更容易發(fā)生非晶化轉變[27]

圖4



圖4AlNbMoZrB在4.8×1015/cm2 Kr離子輻照條件下的室溫TEM形貌

Fig.4TEM images of AlNbMoZrB under the condition of 4.8×1015/cm2 Kr ion irradiation at room temperature (a) typical regions spot scanning under TEM-EDS mode, (b) corresponding TEM and SAED images of the region 3 in Fig.4a, (c) corresponding TEM and SAED images of the region 1 in Fig.4a (d) (e) (f) TEM image of AlNbMoZrB under 4.8×1015/cm2 Kr ion irradiation at 300℃ (d) typical regions spot scanning under TEM-EDS mode, (e) corresponding TEM and SAED images of the region 4 in Fig.4d, (f) corresponding TEM and SAED images of the region 1 in Fig.4 ddot sweep image (e) BCC crystal image (f) BCC crystal

Table 3

表3

表3AlNbMoZrB合金室溫輻照點掃描結果

Table 3EDS point results of as-cast AlNbMoZrB alloy irradiated under room temperature (atomic fraction,%)

Points Al Nb Mo Zr


a1

a2

a3

a4

a5

a6



6.84

9.83

1.97

0.85

1.93

9.17



9

21.7

37.67

40.16

39.35

19.21



12.76

27.37

45.46

44.07

36.84

27.36



71.4

41.09

14.91

14.92

13.15

44.26



圖4d~f給出了Kr離子在300℃輻照AlNbMoZrB合金樣品的TEM形貌和SAED表征結果,對應的EDS結果列于表4 根據(jù)輻照影響區(qū)范圍,d3和d4的位置處于未輻照區(qū),其余位置都受到了輻照 EDS結果表明,在d1~d4的位置Nb、Mo元素富集,為BCC基體相;在d5、d7的位置Al、Zr元素富集,為枝晶間區(qū)Al-Zr相;在d6的位置Zr元素的含量高達~74.96%(原子分數(shù)),對應α-Zr相 圖4e和4f分別對應d4區(qū)域和d1區(qū)域的TEM形貌和SAED圖像,即輻照前后的BCC基體相 對比衍射花樣可知,輻照后的合金基體仍保持BCC結構,沒有發(fā)生相變

Table 4

表4

表4AlNbMoZrB合金在300℃輻照的點掃描結果

Table 4EDS point results of AlNbMoZrB alloy irradiated under 300℃ (atomic fraction, %)

Points Al Nb Mo Zr


d1

d2

d3

d4

d5

d6

d7



2.37

1.88

1.91

2.65

6.61

4.48

4.31



42.27

42.64

42.84

45.38

23

11.01

20.61



41.46

39.18

38.62

34.76

21.36

9.55

5.25



13.89

16.3

16.64

17.21

49.04

74.96

69.83



從圖5給出的TEM形貌可見,Kr離子輻照后的AlNbMoZrB合金基體中出現(xiàn)大量黑點狀的輻照誘導位錯環(huán),其分布深度可達1300 nm 統(tǒng)計結果表明,常溫Kr離子輻照產(chǎn)生的位錯環(huán)其體積密度為4.11×1022 m-3,尺寸為12~16 nm;300℃輻照產(chǎn)生的位錯環(huán)其體積密度約為室溫輻照的1/4(即為1.63×1022 m-3),尺寸增大到23~27 nm 這表明,隨著輻照溫度的升高位錯環(huán)的數(shù)量減少而尺寸增大 其原因是,在高溫下可動型位錯環(huán)的擴散速率提高,使大量位錯環(huán)復合后尺寸增長

圖5



圖5室溫輻照和300℃輻照AlNbMoZrB合金雙束條件下的TEM形貌

Fig.5two-beam conditioned TEM images of AlNbMoZrB at room temperature (a~c) and at 300℃ (d~f)

輻照后體心立方結構金屬中的位錯環(huán),以<100>型和1/2<111>型兩種間隙型位錯環(huán)為主[28] 為了進一步比較不同類型位錯環(huán)密度,圖5給出了雙束條件下的TEM表征結果 選取g0-1-1,g01-1,g00-2為g矢量方向,依據(jù)不可見準則g·b=0,結合衍射條件可以判斷:經(jīng)Kr離子輻照后AlNbMoZrB合金中產(chǎn)生的1/2<111>型位錯環(huán)其體積密度大于<100>型位錯環(huán) 不同類型位錯環(huán)的結構特性,顯著影響合金的力學性能[29] 溫度低于500℃時<100>型位錯環(huán)為不可動型位錯環(huán),大量的<100>型位錯環(huán)阻礙位錯運動從而使材料發(fā)生輻照硬化 1/2<111>型位錯環(huán)為可動型位錯環(huán),在應力作用下可分解生成<100>型位錯片段,使材料發(fā)生硬化效應 而AlNbMoZrB合金中產(chǎn)生的輻照誘導缺陷大部分為1/2<111>型位錯環(huán),對力學性能的影響較小

3 結論

(1) 在AlNbMoZr基高熵合金中添加少量B元素可制備一種具有中子毒性的結構功能一體化高熵合金AlNbMoZrB 鑄態(tài)AlNbMoZrB合金具有優(yōu)異的力學性能

(2) AlNbMoZrB合金具有典型的樹枝晶結構,枝晶區(qū)富集Mo、Nb和B元素為BCC結構基體相,而Al、Zr元素富集在枝晶間區(qū),形成Al-Zr相及α-Zr相,B元素主要以間隙原子的形式固溶在基體中

(3) Kr離子輻照使AlNbMoZrB合金枝晶間區(qū)中的α-Zr相非晶化,而基體BCC相和Al-Zr相在常溫和300℃均不發(fā)生相變

(4) Kr離子輻照使AlNbMoZrB合金產(chǎn)生大量位錯環(huán),輻照溫度的升高使位錯環(huán)的復合效應增強、體積密度降低和尺寸增大 AlNbMoZrB合金中的位錯環(huán)對其力學性能的影響較小

參考文獻

View Option 原文順序文獻年度倒序文中引用次數(shù)倒序被引期刊影響因子

[1]

Zhang P, Jiang L, Yang J X, et al.

Research progress in refractory high entropy alloys for nuclear applications

[J]. Mater. Rev., 2022, 36(14):1

DOIURL [本文引用: 1]

張 平, 蔣 麗, 楊金學 等.

核用難熔高熵合金的研究進展

[J]. 材料導報, 2022, 036(14):1.

[本文引用: 1]

[2]

Li T X, Lu Y P, Cao Z Q, et al.

Opportunity and challenge of refractory high-entropy alloys in the field of reactor structural materials

[J]. Acta Metall. Sin., 2021, 57: 42

[本文引用: 1]

李天昕, 盧一平, 曹志強 等.

難熔高熵合金在反應堆結構材料領域的機遇與挑戰(zhàn)

[J]. 金屬學報, 2021, 57: 42

[本文引用: 1]

[3]

Wang X J, Qiao J W, Wu Y C.

High Entropy Alloys: the new irradiation-resistant candidate materials towards the fusion reactors

[J]. Mater. Rev., 2020, 34(17):9

[本文引用: 1]

王雪姣, 喬珺威, 吳玉程.

高熵合金:面向聚變堆抗輻照損傷的新型候選材料

[J]. 材料導報, 2020, 34(17):9

[本文引用: 1]

[4]

Yong Z A, Ttz A, Zhi T B, et al.

Microstructures and properties of high-entropy alloys

[J]. Prog. Mater. Sci., 2014, 61:1

DOIURL [本文引用: 1]

[5]

Yan X H, Zhang Y.

Preparation and forming process of high-entropy alloy

[J]. J. Netshape Form. Eng., 2022, 14(1): 19

[本文引用: 1]

閆薛卉, 張勇.

高熵合金的制備成形加工工藝

[J]. 精密成形工程, 2022, 14(01): 19

[本文引用: 1]

[6]

He J Y, Liu W H, Wang H, et al.

Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system

[J]. Acta. Mater., 2014, 62: 105

DOIURL [本文引用: 2]

[7]

Tripathy B, Saha R, Bhattacharjee P P.

Microstructure and unusually strong recrystallization texture of the FCC phase of a cost-effective high-strength dual-phase AlCrFe2Ni2 high entropy alloy

[J]. Intermetallics, 2022, 145: 107559.

DOIURL

[8]

Gong Z J, Li C H, Li XY, et al.

Microstructure and phase transition during heat treatment of a new Cu rich high-entropy alloy

[J]. Journal of Netshape Forming Engineering, 2022, 14(2): 83

龔子杰, 李春輝, 李曉宇 等.

新型含Cu高熵合金的微觀組織及熱處理過程相變

[J]. 精密成形工程, 2022, 14(02): 83

[9]

Wang J, Huang W G.

Microstructure and mechanical properties of CrMoVNbFex high-entropy alloys

[J]. Chin. J. Mater. Res., 2016, 30: 609

[本文引用: 1]

王 江, 黃維剛.

CrMoVNbFex高熵合金微觀組織結構與力學性能

[J]. 材料研究學報, 2016, 30: 609

[本文引用: 1]

[10]

Zka J, Jaroslav M, Vesel J, et al.

Microstructure and room temperature mechanical properties of different 3 and 4 element medium entropy alloys from HfNbTaTiZr System

[J]. Entropy, 2019, 21(2):114

DOIURL " />

In this study, single-phase NbTiZr and NbTiZr(MoTa)0.1 medium-entropy alloys (MEAs) were investigated for their use in biomedical implants. The alloys were prepared by arc melting, and were then cold-rolled, annealed, and characterized in terms of phase analysis, mechanical properties, fractography, and wear resistance. Both alloys showed a single body-centered cubic phase with superior mechanical, and tribological properties compared to commercially available biomedical alloys. Mo and Ta-containing MEAs showed higher tensile yield strength (1060 ± 18 MPa)) and higher tensile ductility (~20%), thus overcoming the strength-ductility trade-off with no signs of transformation-induced plasticity, twinning, or precipitation. The generalized stacking fault energy (GSFE) calculations on the {112}<111> slip system by the first-principles calculations based on density functional theory showed that the addition of less than 0.2 molar fraction of Mo and Ta lowers the GSFE curves. This behavior posits the increase in ductility of the alloy by facilitating slips although strength is also increased by solid solution strengthening. The wear resistance of both alloys against hardened steel surfaces was superior to that of commercial biomedical alloys. Thus, we concluded that NbTiZr(MoTa)0.1 MEA with good tensile ductility is a potential candidate for biomedical implants.

[13]

Dirras G, Gubicza J, Heczel A, et al.

Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy

[J]. Mater. Charact., 2015, 108: 1

DOIURL

[14]

Senkov O N, Rao S, Chaput K J, et al.

Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys

[J]. Acta. Mater., 2018, 151: 201

DOIURL

[15]

Niu P D, Li R D, Yuan T C, et al.

Research progress of high-entropy alloys by additive manufacturing

[J]. J. Netshape Form. Eng., 2019, 11(4): 51

[本文引用: 1]

牛朋達, 李瑞迪, 袁鐵錘 等.

增材制造高熵合金研究進展

[J]. 精密成形工程, 2019, 11(04): 51

[本文引用: 1]

[16]

Xie H B, Liu G Z, Guo J J.

Effect of Zr addition on microstructure and corrosion properties of AlFeCrCoCuZrx high-entropy alloys

[J]. J. Mater. Eng., 2016, 44(6): 44

[本文引用: 1]

謝紅波, 劉貴仲, 郭景杰.

Zr元素對AlFeCrCoCuZrx高熵合金組織及腐蝕性能的影響

[J]. 材料工程, 2016, 44(6): 44

[本文引用: 1]

[17]

Li T X, Miao J W, Lu Y P, et al,

Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys

[J]. Int. J. Refract. Met. H., 2022, 103: 105762

DOIURL [本文引用: 1]

[18]

Hong D, Wang H B, Hou L G, et al.

Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties

[J]. Nonferr. Metal. Sci. Eng., 2020, 11(6):7

[本文引用: 1]

洪 達, 王和斌, 侯隴剛 等.

間隙原子對高熵合金組織及性能影響的研究現(xiàn)狀

[J]. 有色金屬科學與工程, 2020, 11(6):7

[本文引用: 1]

[19]

Zong Y, Hashimoto N, Oka H.

Study on irradiation effects of refractory bcc high-entropy alloy

[J]. Nucl. Mater. Energy., 2022, 31: 101158

[本文引用: 1]

[20]

Li Y, Zhang P, Zhang J, et al.

Oxidation behavior of AlCoCrFeNiSi high-entropy alloys at 1100

[J]. Corros. Sci., 2021, 190(1): 109633

DOIURL

[21]

Li G, Wen Y, Yu Z M, et al.

Effect of Al content on properties of CrFeNiAlxSi high entropy alloy

[J]. Chin. J. Mater. Res., 2021, 35(9): 712

[本文引用: 1]

李 剛, 溫 影, 于中民 等.

Al含量對CrFeNiAl(x)Si系高熵合金性能的影響

[J]. 材料研究學報, 2021, 35(9): 712

[本文引用: 1]

[22]

Kang B, Kong T, Dan N H, et al.

Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy

[J]. Int. J. Refract. Met. H., 2021, 100: 105636

DOIURL [本文引用: 1]

[23]

Guo S, Ng C, Lu J, et al.

Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys

[J]. J. Appl. Phys., 2011, 109: 103505

DOIURL [本文引用: 1] class="outline_tb" " />

In this study, single-phase NbTiZr and NbTiZr(MoTa)0.1 medium-entropy alloys (MEAs) were investigated for their use in biomedical implants. The alloys were prepared by arc melting, and were then cold-rolled, annealed, and characterized in terms of phase analysis, mechanical properties, fractography, and wear resistance. Both alloys showed a single body-centered cubic phase with superior mechanical, and tribological properties compared to commercially available biomedical alloys. Mo and Ta-containing MEAs showed higher tensile yield strength (1060 ± 18 MPa)) and higher tensile ductility (~20%), thus overcoming the strength-ductility trade-off with no signs of transformation-induced plasticity, twinning, or precipitation. The generalized stacking fault energy (GSFE) calculations on the {112}<111> slip system by the first-principles calculations based on density functional theory showed that the addition of less than 0.2 molar fraction of Mo and Ta lowers the GSFE curves. This behavior posits the increase in ductility of the alloy by facilitating slips although strength is also increased by solid solution strengthening. The wear resistance of both alloys against hardened steel surfaces was superior to that of commercial biomedical alloys. Thus, we concluded that NbTiZr(MoTa)0.1 MEA with good tensile ductility is a potential candidate for biomedical implants.

[13]

Dirras G, Gubicza J, Heczel A, et al.

Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy

[J]. Mater. Charact., 2015, 108: 1

[14]

Senkov O N, Rao S, Chaput K J, et al.

Compositional effect on microstructure and properties of NbTiZr-based complex concentrated alloys

[J]. Acta. Mater., 2018, 151: 201

[15]

Niu P D, Li R D, Yuan T C, et al.

Research progress of high-entropy alloys by additive manufacturing

[J]. J. Netshape Form. Eng., 2019, 11(4): 51

牛朋達, 李瑞迪, 袁鐵錘 等.

增材制造高熵合金研究進展

[J]. 精密成形工程, 2019, 11(04): 51

[16]

Xie H B, Liu G Z, Guo J J.

Effect of Zr addition on microstructure and corrosion properties of AlFeCrCoCuZrx high-entropy alloys

[J]. J. Mater. Eng., 2016, 44(6): 44

謝紅波, 劉貴仲, 郭景杰.

Zr元素對AlFeCrCoCuZrx高熵合金組織及腐蝕性能的影響

[J]. 材料工程, 2016, 44(6): 44

[17]

Li T X, Miao J W, Lu Y P, et al,

Effect of Zr on the as-cast microstructure and mechanical properties of lightweight Ti2VNbMoZrx refractory high-entropy alloys

[J]. Int. J. Refract. Met. H., 2022, 103: 105762

[18]

Hong D, Wang H B, Hou L G, et al.

Research progress of effect of interstitial atoms on high-entropy alloy's microstructure and properties

[J]. Nonferr. Metal. Sci. Eng., 2020, 11(6):7

洪 達, 王和斌, 侯隴剛 等.

間隙原子對高熵合金組織及性能影響的研究現(xiàn)狀

[J]. 有色金屬科學與工程, 2020, 11(6):7

[19]

Zong Y, Hashimoto N, Oka H.

Study on irradiation effects of refractory bcc high-entropy alloy

[J]. Nucl. Mater. Energy., 2022, 31: 101158

[20]

Li Y, Zhang P, Zhang J, et al.

Oxidation behavior of AlCoCrFeNiSi high-entropy alloys at 1100

[J]. Corros. Sci., 2021, 190(1): 109633

[21]

Li G, Wen Y, Yu Z M, et al.

Effect of Al content on properties of CrFeNiAlxSi high entropy alloy

[J]. Chin. J. Mater. Res., 2021, 35(9): 712

李 剛, 溫 影, 于中民 等.

Al含量對CrFeNiAl(x)Si系高熵合金性能的影響

[J]. 材料研究學報, 2021, 35(9): 712

[22]

Kang B, Kong T, Dan N H, et al.

Effect of boron addition on the microstructure and mechanical properties of refractory Al0.1CrNbVMo high-entropy alloy

[J]. Int. J. Refract. Met. H., 2021, 100: 105636

[23]

Guo S, Ng C, Lu J, et al.

Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys

[J]. J. Appl. Phys., 2011, 109: 103505



Phase stability is an important topic for high entropy alloys (HEAs), but the understanding to it is very limited. The capability to predict phase stability from fundamental properties of constituent elements would benefit the alloy design greatly. The relationship between phase stability and physicochemical/thermodynamic properties of alloying components in HEAs was studied systematically. The mixing enthalpy is found to be the key factor controlling the formation of solid solutions or compounds. The stability of fcc and bcc solid solutions is well delineated by the valance electron concentration (VEC). The revealing of the effect of the VEC on the phase stability is vitally important for alloy design and for controlling the mechanical behavior of HEAs.

[24]

Takeuchi A, Inoue A.

Quantitative evaluation of critical cooling rate for metallic glasses

[J]. Mater. Sci. Eng., 2001, 304-306A: 446

[25]

Guo S, Liu C T.

Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase

[J]. Prog. Nat. Sci-Mater., 2011, 21(6): 433

[26]

Griffiths M.

A review of microstructure evolution in zirconium alloys during irradiation

[J]. J. Nucl. Mater., 1988, 159: 190-218

[27]

Lefebvre F, Lemaignan C.

Heavy ion-induced amorphlsation of Zr(Fe, Cr)2 precipitates in Zircaloy-4

[J]. J. Nucl. Mater., 1989, 165(2):122-127

[28]

El-Atwani O, Esquivel E, Efe M, et al.

Loop and void damage during heavy ion irradiation on nanocrystalline and coarse grained tungsten: Microstructure, effect of dpa rate, temperature, and grain size

[J]. Acta. Mate., 2018, 149: 206

[29]

Arakawa K, Hatanaka M, Kuramoto E, et al.

Changes in the burgers vector of perfect dislocation loops without contact with the external dislocations

[J]. Phys. Rev. Lett., 2006, 96(12): 125506

Research progress in refractory high entropy alloys for nuclear applications

1

2022

聲明:
“AlNbMoZrB系難熔高熵合金的Kr離子輻照損傷行為” 該技術專利(論文)所有權利歸屬于技術(論文)所有人。僅供學習研究,如用于商業(yè)用途,請聯(lián)系該技術所有人。
我是此專利(論文)的發(fā)明人(作者)
分享 0
         
舉報 0
收藏 0
反對 0
點贊 0
全國熱門有色金屬技術推薦
展開更多 +

 

中冶有色技術平臺微信公眾號
了解更多信息請您掃碼關注官方微信
中冶有色技術平臺微信公眾號中冶有色技術平臺

最新更新技術

報名參會
更多+

報告下載

第二屆中國微細粒礦物選礦技術大會
推廣

熱門技術
更多+

衡水宏運壓濾機有限公司
宣傳
環(huán)磨科技控股(集團)有限公司
宣傳

發(fā)布

在線客服

公眾號

電話

頂部
咨詢電話:
010-88793500-807
專利人/作者信息登記