根據(jù)Hall-Petch公式可推測(cè)具有均質(zhì)結(jié)構(gòu)金屬材料的力學(xué)性能[1, 2]
納米材料[3, 4]的強(qiáng)度和硬度都非常高,但是很難生成極其細(xì)化的晶胞以存儲(chǔ)更多的位錯(cuò),因此往往很早就失穩(wěn)進(jìn)入了頸縮階段
粗晶材料的均勻延伸性好,加工硬化能力強(qiáng),但是其強(qiáng)度較低
近年來(lái),朱運(yùn)田、盧柯等[5~10]提出了異質(zhì)結(jié)構(gòu)材料的概念,即在金屬材料中引入一個(gè)異質(zhì)區(qū)域以同時(shí)得到納米材料的高強(qiáng)度和粗晶材料的高延展性,從而實(shí)現(xiàn)金屬材料強(qiáng)度-塑性的良好匹配
異質(zhì)結(jié)構(gòu)材料,分為異質(zhì)層狀結(jié)構(gòu)材料、梯度結(jié)構(gòu)材料、核殼結(jié)構(gòu)材料、雙相結(jié)構(gòu)材料以及多模態(tài)結(jié)構(gòu)材料[9]
在異質(zhì)結(jié)構(gòu)材料的塑性變形過(guò)程中,異質(zhì)區(qū)的變形是不均勻的
在軟質(zhì)區(qū)產(chǎn)生背應(yīng)力[11],在硬質(zhì)區(qū)產(chǎn)生前應(yīng)力[12],其共同作用產(chǎn)生異質(zhì)變形誘導(dǎo)強(qiáng)化,增強(qiáng)應(yīng)變硬化,有助于提高異質(zhì)結(jié)構(gòu)材料的全局屈服強(qiáng)度并保持延展性
異質(zhì)變形誘導(dǎo)應(yīng)力和應(yīng)變硬化的微觀機(jī)理研究尚處于前沿階段,梯度結(jié)構(gòu)層中界面影響區(qū)的形成和演變尚不十分清楚
科研人員以數(shù)字圖像相關(guān)法開展塑性變形過(guò)程的力學(xué)研究[13, 14],為梯度結(jié)構(gòu)材料的力學(xué)行為的解釋和變形機(jī)理的闡述提供了直觀的表征支持
本文研究Cu-4.5%(質(zhì)量分?jǐn)?shù))Al合金梯度結(jié)構(gòu)材料的加工硬化行為,探究室溫下準(zhǔn)靜態(tài)拉伸優(yōu)異的屈服強(qiáng)度-均勻延伸性組合的微觀機(jī)理,通過(guò)表征表面機(jī)械研磨處理(Surface mechanical attrition treatment,SMAT)后合金板的梯度層由表層到芯部形成的微觀組織的差異并結(jié)合異質(zhì)變形誘導(dǎo)強(qiáng)化等理論,系統(tǒng)說(shuō)明高強(qiáng)度、高塑性潛在的微觀塑性變形的力學(xué)行為,以較低的加工成本換取極佳的強(qiáng)塑性匹配,探索梯度結(jié)構(gòu)材料的工業(yè)化生產(chǎn)和應(yīng)用方式
1 實(shí)驗(yàn)方法
實(shí)驗(yàn)用銅
鋁合金為純銅中固溶了4.5%的Al元素
將熱鍛和冷鍛成厚度為4 mm的銅鋁合金板放置在溫度為923 K的管式真空爐中退火2 h,制備出均質(zhì)結(jié)構(gòu)的粗晶銅鋁合金板
再將其在液氮下表面機(jī)械研磨[7] 2 min,制備出具有雙面梯度結(jié)構(gòu)的銅鋁合金板
使用型號(hào)為SHIMADZU Universal Tester的力學(xué)試驗(yàn)機(jī)進(jìn)行單軸拉伸測(cè)試,應(yīng)變速率為5×10-4 s-1
拉伸試樣標(biāo)距部分的尺寸為15 mm×5 mm×4 mm(圖1a),用240#到2000#砂紙將打磨電火花線切割殘留痕跡的截面
數(shù)字圖像相關(guān)法(Digital image correlation,DIC)與拉伸試驗(yàn)同步進(jìn)行,圖1b給出了斑點(diǎn)與分析概覽
![](/grab_file/image/20240403/164534_7892.jpg)
圖1拉伸樣品尺寸、數(shù)字圖像相關(guān)法斑點(diǎn)及觀測(cè)區(qū)域以及微觀表征區(qū)域
Fig.1Size of tensile text samples (a), DIC speckle and observation area (b) and the area of microscopic characterization (c)
用儀器型號(hào)Optic Microscope (OM) Leica DM 5000的光學(xué)顯微鏡對(duì)樣品進(jìn)行微觀表征
制備所用樣品時(shí),依次用400#、800#、2000#、5000#砂紙將其打磨,然后將研磨拋光的表面腐蝕余額1 min,腐蝕液是用
氯化鐵5 g+50 mL稀鹽酸+100 mL水配制;將樣品研磨拋光后,再用離子拋光儀拋光以去除機(jī)械損傷層用于掃描電鏡觀察,所用儀器是型號(hào)為FE-SEM, NOVA Nano SEM 450并帶有電子背散射衍射(Electron backscattered diffraction,EBSD)信號(hào)探頭的掃描電鏡,其操作電壓為250 KV;用于透射電鏡(Transmission electron microscope,TEM)觀察的樣品,需要沿深度取寬約1000 μm的梯度截面,用2000#砂紙將其機(jī)械減薄至50 um,再鑲嵌在雙聯(lián)銅環(huán)上離子減薄使其有良好的可觀察薄區(qū),離子減薄參數(shù)為5 keV 8°處理2 h、4 keV 5°處理0.5 h、2.5 keV 3°處理2 h,透射電鏡的型號(hào)為JEM-2100 Plus TEM,操作電壓為200 kV
微觀表征區(qū)域的選區(qū)示意圖,在圖1c中給出
2 結(jié)果和討論
Cu-4.5%Al的合金板在液氮溫度下SMAT處理2 min,為了維持材料整體的連續(xù)性,在其表面層產(chǎn)生了沿深度呈梯度遞減分布的幾何必要位錯(cuò)(Geometrically necessary dislocations,GNDs)(圖2a)
這符合金屬材料的塑性變形理論,統(tǒng)計(jì)同一深度的平均局部取向差(Kernel average misorientation,KAM)值并基于應(yīng)變梯度理論[15, 16],其GND的值為
ρGND=2KAMaveμb(1)
式中ρGND是GNDs的值,KAMave為局部取向差的平均值,μ為EBSD的掃描步長(zhǎng),b為位錯(cuò)的柏氏矢量
![](/grab_file/image/20240403/164535_3170.jpg)
圖2梯度層的微觀結(jié)構(gòu)
Fig.2Microstructure of gradient layer (a) KAM map of the depth ~300 μm depth, characterized by EBSD, (b) The GND distribution map with depth, calculated by the average KAM statistics in (a), (c~e) TEM bright field image of ~30 μm, ~153 μm, ~246 μm depth, respectively
圖2b表明,統(tǒng)計(jì)出來(lái)的GND密度沿深度呈梯度降低,在~50 μm處趨勢(shì)放緩最終在~250 μm深度處趨于平穩(wěn)
這表明,處理后的樣品加工影響深度可能比~250 μm更大,其最表面的GND約為6.8×1013 m-2,芯部區(qū)域的GND約為2.4×1013 m-2,表層和芯部GND的差距約2倍
該成分的層錯(cuò)能(Stacking fault energy,SFE)很低只有12 mJ/m2(純銅的層錯(cuò)能有78 mJ/m2),加工溫度對(duì)微觀結(jié)構(gòu)的影響各不相同[17],生成位錯(cuò)的臨界分切應(yīng)力隨溫度降低而增大,生成層錯(cuò)(Stacking faults,SFs)的臨界分切應(yīng)力隨溫度的降低而降低[18]
在此加工溫度下占主導(dǎo)地位的變形機(jī)制由層錯(cuò)取代了位錯(cuò)[19, 20],從而促進(jìn)了{(lán)111}晶面族層錯(cuò)的形成
用TEM表征了~30 μm、~153 μm、~246 μm 3個(gè)深度,觀察到極其細(xì)小的層錯(cuò)密度沿深度梯度遞減,而梯度層中的位錯(cuò)也從靠近表層的大量林位錯(cuò)(圖2c)演變成靠近芯部纏結(jié)的位錯(cuò)(圖2d),在芯部甚至能觀察到單個(gè)分布的位錯(cuò)(圖2e),證實(shí)了微觀結(jié)構(gòu)隨深度變化呈現(xiàn)缺陷密度梯度特征
對(duì)SMAT處理前后的拉伸試樣進(jìn)行準(zhǔn)靜態(tài)單軸拉伸測(cè)試(圖3a),短時(shí)SMAT處理將Cu-4.5%Al合金的屈服強(qiáng)度從~90 MPa提高到~170 MPa,均勻延伸率從~54%降低至~45%,在真應(yīng)力應(yīng)變曲線(圖3a)背景的金相上可觀察到加工后腐蝕液對(duì)位錯(cuò)滑移帶的點(diǎn)蝕痕跡[21, 22]
加工后屈服強(qiáng)度的提高可以歸因于層錯(cuò),對(duì)梯度層~30 μm深度處捕捉了一張放大數(shù)倍的TEM明場(chǎng)像(圖3b),可以發(fā)現(xiàn)a2<110>全位錯(cuò)沿{111}面滑移會(huì)分解成2個(gè)a6<211>肖克利不全位錯(cuò)
由于Cu-4.5%Al合金的層錯(cuò)能較低,兩個(gè)不全位錯(cuò)之間的層錯(cuò)寬度增大,因此異號(hào)不全位錯(cuò)很難碰到而湮滅,因此在梯度層留下了大量的層錯(cuò)(圖3c)
在相同晶面上產(chǎn)生的層錯(cuò)堆疊在一起,形成了有一定原子層寬度的納米孿晶[23, 24](Nano twins,NTs),從面缺陷演變成了體缺陷;在不同晶面上產(chǎn)生的層錯(cuò)和層錯(cuò)之間發(fā)生反應(yīng),兩個(gè)拓展位錯(cuò)在各自滑移面相向移動(dòng)
當(dāng)每個(gè)拓展位錯(cuò)中的一個(gè)肖克利不全位錯(cuò)運(yùn)動(dòng)到滑移面的交截線時(shí),位錯(cuò)反應(yīng)產(chǎn)生了一個(gè)新的純?nèi)行臀诲e(cuò),將這兩個(gè)可動(dòng)的拓展位錯(cuò)在此處固定住,此時(shí)的混合位錯(cuò)組態(tài)稱為面角位錯(cuò)(Lomer-cottrell dislocation,L-C dislocation)(圖3b),由三個(gè)不全位錯(cuò)和兩片層錯(cuò)所構(gòu)成
對(duì)于面心立方晶體(Face centered cubic,F(xiàn)CC)結(jié)構(gòu)的金屬加工硬化起重大作用,能有效釘扎和塞積位錯(cuò)
由此可知,屈服強(qiáng)度大大提高的直接原因,可歸于低層錯(cuò)能合金在液氮下塑性應(yīng)變產(chǎn)生的由層錯(cuò)組成的微觀結(jié)構(gòu)以及層錯(cuò)對(duì)位錯(cuò)的塞積[25, 26]
![](/grab_file/image/20240403/164535_1806.jpg)
圖3SMAT處理前后的真應(yīng)力-應(yīng)變曲線對(duì)比(背景為梯度層的金相顯微圖)、在梯度層~30 μm深度處的TEM明場(chǎng)像以及拓展位錯(cuò)的形成-全位錯(cuò)分解為不全位錯(cuò)
Fig.3Comparison of true stress-strain curves before and after SMAT treatment (a, metallographic image with gradient layer in the background); TEM bright field image at gradient layer ~30 μm depth (b); Extended dislocation formation-decomposition of full dislocations into partial dislocations (c)
為此,圖4給出了準(zhǔn)靜態(tài)單軸拉伸測(cè)試試樣掃描的斷口形貌,圖4a和4b分別給出了梯度結(jié)構(gòu)試樣和粗晶試樣的斷口
斷口芯部的韌窩很大且均勻(圖4a2、4b2),表明芯部的塑性變形充分且穩(wěn)定
從斷口邊緣可觀察到,粗晶試樣的表層和芯部特征相同,而梯度試樣的特征就有所不同
斷口邊緣從表及芯存在過(guò)渡的形貌(圖4a3),表明材料變形的非均質(zhì)的特性
梯度層雖然有韌窩,但不均勻且較淺(圖4a4),說(shuō)明單一梯度層在頸縮階段前SMAT處理的影響
晶胞的加工硬化的潛力降低了[27],不能繼續(xù)均勻變形,失去了和芯部同步塑性變形的能力
梯度層失穩(wěn)進(jìn)入頸縮階段,使試樣提前進(jìn)入頸縮階段[28]
![](/grab_file/image/20240403/164536_5315.jpg)
圖4梯度結(jié)構(gòu)試樣和粗晶試樣的斷口特征
Fig.4Observation of fracture features of gradient-structure sample (a) and coarse-grain sample (b)
SMAT處理前后拉伸試樣斷口形貌的差異表明,剪切帶過(guò)早的形核并集中使梯度層的加工硬化不能保持,為此分析了拉伸過(guò)程中剪切帶的演變
結(jié)果表明,材料的加工硬化并不是整體同步進(jìn)行,而是加工硬化更強(qiáng)的區(qū)域?qū)?yīng)力分散到加工硬化較弱的區(qū)域[13, 29]
觀察了粗晶試樣DIC從屈服后到~30%應(yīng)變階段,如圖5所示,剪切帶的形核在邊緣產(chǎn)生(圖5a的0.78%應(yīng)變點(diǎn)),并不是在邊緣立即深化導(dǎo)致微裂紋產(chǎn)生,加工硬化將應(yīng)力分散到芯部(圖5a的4.54%應(yīng)變點(diǎn))
從圖5a可見,早期沿Y軸產(chǎn)生的剪切帶與同一Y軸高度上的應(yīng)變大致相近,較突出的應(yīng)變集中區(qū)通過(guò)應(yīng)力分散將附近應(yīng)變較小的區(qū)域加工硬化(見圖5a的29.95%應(yīng)變點(diǎn)),最終在頸縮階段前試樣整體達(dá)到加工硬化能力的最大值,不能繼續(xù)加工硬化保持均勻的塑性變形
此時(shí)剪切帶從試樣邊緣區(qū)域深化產(chǎn)生微裂紋,試樣進(jìn)入不穩(wěn)定變形的頸縮階段,直至斷裂
依據(jù)均勻塑性變形時(shí)體積恒定原則,沿Y軸正應(yīng)變較大的區(qū)域在X軸收縮的負(fù)應(yīng)變更多
在全局上,均勻分布的剪切帶,是試樣保持較好均勻塑性變形必不可少的
![](/grab_file/image/20240403/164536_1287.jpg)
圖5粗晶試樣的剪切帶演變
Fig.5Evolution of shear bands of CG sample (a) plastic strain distribution along the Y-axis at each global strain; (b) plastic strain distribution along the X-axis at each global strain
具有梯度結(jié)構(gòu)試樣(圖6),其剪切帶形核也從邊緣開始,而梯度層中的剪切帶形核比粗晶試樣更明顯
隨著塑性變形的進(jìn)行,表層內(nèi)很集中的應(yīng)變區(qū)(圖6a)從表層傳遞到芯部
從圖6a中9.61%應(yīng)變圖像可見,芯部的變形量比表層多,因?yàn)樵嚇觿倧那筮M(jìn)入塑性變形階段,梯度層內(nèi)的缺陷密度梯度較高,表層與芯部之間的彈性-塑性階段相互作用引起的長(zhǎng)程內(nèi)應(yīng)力導(dǎo)致了過(guò)渡界面的高應(yīng)力集中[13, 14]
芯部?jī)?nèi)較高的加工硬化使強(qiáng)度提高從而降低了流應(yīng)力差異,粗晶芯部穩(wěn)定了剪切帶并阻止了向芯部傳遞
這導(dǎo)致在梯度層形核的剪切帶先向標(biāo)距段未加工硬化的部分傳遞(圖6a的0.34%應(yīng)變點(diǎn)),標(biāo)距段全局都加工硬化后梯度層的剪切帶核才開始向芯部擴(kuò)散,造成應(yīng)變局域化(圖6a的9.61%應(yīng)變點(diǎn))
其微觀機(jī)理是,表層與芯部存在應(yīng)變差異
為了維持材料的整體連續(xù)性,在芯部開動(dòng)的弗蘭克-里德位錯(cuò)源產(chǎn)生了大量的幾何必要位錯(cuò)并向梯度層發(fā)射(圖7a)
但是,梯度層靠近表層的區(qū)域有高密度的幾何必要位錯(cuò),因此從芯部發(fā)射過(guò)來(lái)的幾何必要位錯(cuò)在梯度層的過(guò)渡界面塞積[12],有序排列塞積的幾何必要位錯(cuò)使靠近表層的梯度層產(chǎn)生前應(yīng)力
前應(yīng)力使梯度層在承受的流應(yīng)力之外附加了來(lái)自芯部的應(yīng)力,梯度層也反饋背應(yīng)力施加在芯部
芯部加工硬化的強(qiáng)度加上背應(yīng)力,可分擔(dān)芯部承受的部分流應(yīng)力
因此,芯部變相地被背應(yīng)力強(qiáng)化了
梯度層與芯部之間的異質(zhì)結(jié)構(gòu)誘導(dǎo)強(qiáng)化行為使剪切帶在整個(gè)標(biāo)距部分均勻分布,芯部發(fā)生的幾何必要位錯(cuò)彌補(bǔ)了一部分表層晶胞產(chǎn)生位錯(cuò)能力的不足,從而使試樣在塑性變形過(guò)程中在保持了較高的均勻延伸性的同時(shí)使屈服強(qiáng)度大大提高
![](/grab_file/image/20240403/164536_4026.jpg)
圖6梯度結(jié)構(gòu)試樣的剪切帶演變
Fig.6Evolution of shear bands of GS sample (a) plastic strain distribution along the Y-axis at each global strain; (b) plastic strain distribution along the X-axis at each global strain
![](/grab_file/image/20240403/164537_3582.jpg)
圖7GND塞積的示意圖,在軟區(qū)中誘導(dǎo)背應(yīng)力,在硬區(qū)中誘導(dǎo)前應(yīng)力[12]以及有限元模擬平均應(yīng)變?yōu)?.2%應(yīng)力和應(yīng)變沿厚度方向的變化[30]
Fig.7Schematics of a GND pile-up, inducing back stress in the soft domain, which in turn induces forward stress in the hard domain[12] (a) andstress and strain variations along thickness direction on 0.2% average strain by finite element simulation (FEM)[30] (b)
異質(zhì)結(jié)構(gòu)誘導(dǎo)的強(qiáng)化行為,不只是在強(qiáng)-弱的過(guò)渡界面上通過(guò)前-背應(yīng)力實(shí)現(xiàn)的
雙面梯度結(jié)構(gòu)的強(qiáng)-弱-強(qiáng)的雙面結(jié)構(gòu)分布推遲了應(yīng)變局域化[30](如圖7b),有助于應(yīng)力均勻分布和避免應(yīng)變集中
應(yīng)力應(yīng)變的均勻分布,使試樣的延展性提高
3 結(jié)論
將Cu-4.5%Al合金板材進(jìn)行機(jī)械研磨后,在其表面形成了厚度約為250 μm的梯度結(jié)構(gòu)層,從表層到芯部的位錯(cuò)結(jié)構(gòu)分別為林位錯(cuò)、纏結(jié)的位錯(cuò)、單個(gè)的位錯(cuò),層錯(cuò)結(jié)構(gòu)在靠近表層區(qū)域(~30 μm)生成了納米孿晶
Cu-4.5%Al合金的拉伸試樣經(jīng)準(zhǔn)靜態(tài)單軸拉伸后,其屈服強(qiáng)度提高了~80 MPa,均勻延伸率降低9%
屈服強(qiáng)度提高的直接原因,是梯度層中的納米孿晶和面角位錯(cuò)對(duì)可動(dòng)位錯(cuò)的存儲(chǔ)、塞積的作用;間接原因,是異質(zhì)結(jié)構(gòu)誘導(dǎo)強(qiáng)化產(chǎn)生的額外的強(qiáng)化作用
均勻延伸性降低程度很低,可以歸因于雙面梯度結(jié)構(gòu)對(duì)剪切帶均勻分布的貢獻(xiàn),梯度層與芯部之間的異質(zhì)結(jié)構(gòu)誘導(dǎo)強(qiáng)化行為使剪切帶在整個(gè)標(biāo)距段均勻分布,在芯部發(fā)生的幾何必要位錯(cuò)彌補(bǔ)了一部分表層晶胞產(chǎn)生位錯(cuò)能力的不足,從而使試樣在塑性變形過(guò)程中在保持了一定均勻延伸性的同時(shí)大大提高了屈服強(qiáng)度、推遲了應(yīng)變局域化,從而使標(biāo)距段繼續(xù)加工硬化,避免了在較早階段失穩(wěn)進(jìn)入頸縮階段
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Petch N J.
The cleavage strength of polycrystals
[J]. Journal of the iron and steel institute, 1953, 174: 25
[本文引用: 1]
[2]
Hall E O.
The deformation and ageing of mild steel: III discussion of results
[J]. Proceedings of the Physical Society. Section B, 1951, 64(9): 747
DOIURL [本文引用: 1]
[3]
Meyers M A, Mishra A, Benson D J.
Mechanical properties of nanocrystalline materials
[J]. Progress in materials science, 2006, 51(4): 427
DOIURL [本文引用: 1]
[4]
Gleiter H.
Nanocrystalline Materials
[M]. Advanced Structural and Functional Materials.
Springer,
Berlin, Heidelberg, 1991: 1
[本文引用: 1]
[5]
Wu X L, Jiang P, Chen L, et al.
Extraordinary strain hardening by gradient structure
[J]. Proceedings of the National Academy of Sciences, 2014, 111(20): 7197
DOIURL [本文引用: 1]
[6]
Wu X L, Jiang P, Chen L, et al.
Synergetic strengthening by gradient structure
[J]. Materials Research Letters, 2014, 2(4): 185
DOIURL
[7]
Fang T H, Li W L, Tao N R, et al.
Revealing extraordinary intrinsic tensile plasticity in gradient nano-grained copper
[J]. Science, 2011, 331(6024): 1587
DOIPMID [本文引用: 1]
![](../../../richhtml/1005-3093/richHtml_jats1_1/images/more.jpg)
Nano-grained (NG) metals are believed to be strong but intrinsically brittle: Free-standing NG metals usually exhibit a tensile uniform elongation of a few percent. When a NG copper film is confined by a coarse-grained (CG) copper substrate with a gradient grain-size transition, tensile plasticity can be achieved in the NG film where strain localization is suppressed. The gradient NG film exhibits a 10 times higher yield strength and a tensile plasticity comparable to that of the CG substrate and can sustain a tensile true strain exceeding 100% without cracking. A mechanically driven grain boundary migration process with a substantial concomitant grain growth dominates plastic deformation of the gradient NG structure. The extraordinary intrinsic plasticity of gradient NG structures offers their potential for use as advanced coatings of bulk materials.
[8]
Lu K.
Making strong nanomaterials ductile with gradients
[J]. Science, 2014, 345(6203): 1455
DOIPMID
[9]
Zhu Y, Ameyama K, Anderson P M, et al.
Heterostructured materials: superior properties from hetero-zone interaction
[J]. Materials Research Letters, 2021, 9(1): 1
DOIURL [本文引用: 1]
[10]
Lu L, Wu X, Beyerlein I J.
Preface to the viewpoint set on: Heterogeneous gradient and laminated materials
[J]. Scripta Materialia, 2020, 187: 307
DOIURL [本文引用: 1]
[11]
Wu X, Yang M, Yuan F, et al.
Heterogeneous lamella structure unites ultrafine-grain strength with coarse-grain ductility
[J]. Proceedings of the National Academy of Sciences, 2015, 112(47): 14501
DOIURL [本文引用: 1]
[12]
Zhu Y, Wu X.
Perspective on hetero-deformation induced (HDI) hardening and back stress
[J]. Materials Research Letters, 2019, 7(10): 393
DOIURL [本文引用: 4]
[13]
Wang Y F, Huang C X, He Q, et al.
Heterostructure induced dispersive shear bands in heterostructured Cu
[J]. Scripta Materialia, 2019, 170: 76
DOI [本文引用: 3]
![](../../../richhtml/1005-3093/richHtml_jats1_1/images/more.jpg)
Here we report the formation of dispersive shear bands in a heterostructured Cu composed of coarse-grained (CG) and ultrafine-grained (UFG) domains. Microscale digital image correlation revealed that dense shear bands evolved in a stable manner over the whole gauge section. Our observation suggests that the limited strain hardening of UFG domains and deformation heterogeneity promoted shear banding, which is a major deformation mechanism in heterostructured materials. The dispersive shear banding helped with ductility retention. (C) 2019 Acta Materialia Inc. Published by Elsevier Ltd.
[14]
Huang C X, Wang Y F, Ma X L, et al.
Interface affected zone for optimal strength and ductility in heterogeneous laminate
[J]. Materials Today, 2018, 21(7): 713
DOIURL [本文引用: 2]
[15]
Gao H, Huang Y, Nix W D, et al.
Mechanism-based strain gradient plasticity—I. Theory
[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(6): 1239
DOIURL [本文引用: 1]
[16]
Kubin L P, Mortensen A.
Geometrically necessary dislocations and strain-gradient plasticity: a few critical issues
[J]. Scripta materialia, 2003, 48(2): 119
DOIURL [本文引用: 1]
[17]
Liu Y, Kang R, Feng X H, et al.
Microstructure and mechanical properties of extruded Mg-alloy Mg-Al-Ca-Mn-Zn
[J]. Chinese Journal of Materials Research, 2022, 36(1): 13
DOI [本文引用: 1]
![](../../../richhtml/1005-3093/richHtml_jats1_1/images/more.jpg)
The microstructure and mechanical properties of extruded Mg-alloy of Mg-1Al-0.4Ca-0.5Mn-0.2Zn (mass fraction, %) were systematically investigated. As indicated by the results, the incomplete dynamic recrystallization occurred for the alloys extruded at 260℃ (denoted as AXMZ1000-260) and 290°C (AXMZ1000-290) with recrystallized grain sizes of 0.75 μm and 1.2 μm, respectively. The two alloys have high-density G.P. regions and spherical nano-phases, which can effectively inhibit the dislocation motion and provide abundant nucleation sites for dynamic recrystallization. Moreover, the nano-phases precipitated along grain boundaries can restrain the migration of grain boundary and restrict the growth of DRXed grains, which results in the ultrafine grains with a size of 0.75 μm in AXMZ1000-260 alloy. The strength of the alloy decreases with the increase of extrusion temperature, and the change of elongation is not obvious. The yield strength and elongation of alloys extruded at 260℃ and 290℃ are approximately 322 MPa and 343 MPa, as well as 13.4% and 13%, respectively. The dynamic precipitation and recovery process are promoted by the increasing extrusion temperature, and a high-density G.P. zones and spherical nano-phases are accumulated in the alloy. At the same time, many dislocations are transformed into LAGBs by dynamic recovery, and the unDRXed areas are subdivided into dense lamellar subgrains. The nano-phases and LAGBs can effectively hinder the newly generated dislocation motion, which is the major reason that the alloy extruded at 290℃ still have a high yield strength and the change of ductility is not obvious. Furthermore, TEM observations show that the pinning effect of G.P. zones can impede the dynamic recovery to certain extent, resulting in a high number of residual dislocations in the alloy, which is conducive to the improvement of the yield strength.
劉 洋, 康 銳, 馮小輝 等.
Mg-Al-Ca-Mn-Zn變形鎂合金的組織和力學(xué)性能
[J]. 材料研究學(xué)報(bào), 2022, 36(1): 13
[本文引用: 1]
[18]
An X H, Wu S D, Wang Z G, et al.
Significance of stacking fault energy in bulk nanostructured materials: insights from Cu and its binary alloys as model systems
[J]. Progress in Materials Science, 2019, 101: 1
DOIURL [本文引用: 1]
[19]
Tian Y Z, Zhao L J, Park N, et al.
Revealing the deformation mechanisms of Cu-Al alloys with high strength and good ductility
[J]. Acta Materialia, 2016, 110: 61
DOIURL [本文引用: 1]
[20]
Tian Y Z, Zhao L J, Chen S, et al.
Significant contribution of stacking faults to the strain hardening behavior of Cu-15% Al alloy with different grain sizes
[J]. Scientific reports, 2015, 5(1): 1
[本文引用: 1]
[21]
Liu Y, Xu K, Tu J, et al.
Microstructure evolution and strength-ductility behavior of FeCoNiTi high-entropy alloy
[J]. Chinese Journal of Materials Research, 2020, 34(7): 535
DOI [本文引用: 1]
![](../../../richhtml/1005-3093/richHtml_jats1_1/images/more.jpg)
A new type of dual-phase high-entropy alloy (FeCoNiTi) was designed by means of thermodynamic software and then block material of FeCoNiTi high-entropy alloy was prepared via vacuum arc smelting and then heat treatment. Characterization results demonstrate that the as-homogenized FeCoNiTi alloy presents dual-phase microstructure composed of the lamellar structure (hexagonal close packed (Laves) phase) and the Widmanst?tten laths (face-centered cubic (FCC) phase). The FeCoNiTi alloy shows excellent comprehensive property at room temperature with compressive strength σb=2.08 GPa and compression strain ε=20.3%. The high strength can mainly be attributed to the hard Laves phase (lamellar structure) strengthening; while dislocation slip and deformation twin in the soft FCC phase (Widmanst?tten laths) provide the ductility.
劉 怡, 徐 康, 涂 堅(jiān) 等.
高熵合金FeCoNiTi的微觀組織演變和強(qiáng)韌化行為
[J]. 材料研究學(xué)報(bào), 2020, 34(7): 535
[本文引用: 1]
[22]
Qiu J M, Xiao H, Wang J, et al.
Microstructure evolution of semi-solid ZCuSn10 copper alloy during reheating process
[J]. Chinese Journal of Materials Research, 2015, 29(4): 277
DOI [本文引用: 1]
![](../../../richhtml/1005-3093/richHtml_jats1_1/images/more.jpg)
The semi-solid ZCuSn10 alloy billets were prepared with strain induced melt activated (SIMA) method involved with hot rolling and reheating process. The microstructure evolution process and spheroidizing mechanism of α(Cu) phase were studied by means of optical microscope, scanning electron microscope and image analysis software. The results show that when a hot rolled ZCuSn10 copper alloy billet with a deformation rate 16% was reheated at 930℃, of which the semi-solid primary phase spheroidized gradually with the increasing holding time; while the average grain size of the copper alloy decreases firstly with time from 68.24 μm for 8 min to 62.31 μm for 10 min and then increases to 71.09 μm for 25 min; the liquid fraction increases from 18.14% for 8 min to 25.32% for 25 min; the shape factor decreases firstly with time from 2.91 for 8 min to 1.67 for 15 min and then increases to 2.43 for 25 min. The alloy exhibits the best semi-solid microstructure for 15 min holding with an average grain size 65.64 μm, a liquid fraction 23.66% and a shape factor 1.67. The microstructure evolution mechanism involves with merge of grains and growth as well as atom diffusion leading to grain growth and spheroidization.
邱集明, 肖 寒, 王 佳 等.
半固態(tài)ZCuSn10銅合金二次加熱組織的演化
[J]. 材料研究學(xué)報(bào), 2015, 29(4): 277
DOI [本文引用: 1]
![](../../../richhtml/1005-3093/richHtml_jats1_1/images/more.jpg)
采用熱軋與重熔的SIMA法制備了ZCuSn10銅合金半固態(tài)坯料
先通過(guò)多向熱軋對(duì)ZCuSn10銅合金坯料進(jìn)行預(yù)變形, 然后對(duì)其進(jìn)行半固態(tài)溫度區(qū)間保溫不同時(shí)間的二次加熱處理
使用光學(xué)顯微鏡、掃描電鏡、能譜及圖像分析軟件等手段研究了坯料二次加熱過(guò)程中微觀組織的演化, 并分析了α(Cu)球化組織的形成機(jī)制
結(jié)果表明:在熱軋變形量為16%、加熱溫度為930℃時(shí), 隨著保溫時(shí)間的延長(zhǎng)半固態(tài)ZCuSn10銅合金坯料初生α(Cu)逐漸發(fā)生球化, 平均晶粒直徑先減小后增大, 由二次加熱保溫8 min的68.24 μm先減小至10 min的62.31 μm然后增大至25 min的71.09 μm; 保溫10 min時(shí)平均晶粒直徑最小, 液相率由保溫8 min時(shí)的18.14%逐漸增加到保溫25 min時(shí)的25.32%; 形狀因子隨著保溫時(shí)間的延長(zhǎng)先減小后增加, 由保溫 8 min時(shí)的2.91先減小至15 min時(shí)的1.67, 然后增大到保溫25 min時(shí)的2.43
保溫15 min時(shí)的半固態(tài)組織最優(yōu), 其平均晶粒直徑為65.64 μm、液相率為23.66%、形狀因子為1.67
在半固態(tài)銅合金二次加熱過(guò)程中, 組織演變的主要機(jī)制是加熱前期的晶粒合并長(zhǎng)大和液相增加后的原子擴(kuò)散導(dǎo)致的晶粒長(zhǎng)大并球化
[23]
Wei K, Hu R, Yin D, et al.
Grain size effect on tensile properties and slip systems of pure magnesium
[J]. Acta Materialia, 2021, 206
[本文引用: 1]
[24]
Zhou X, Li X Y, Lu K.
Strain hardening in gradient nano-grained Cu at 77u202f K
[J]. Scripta Materialia, 2018, 153: 6
DOIURL [本文引用: 1]
[25]
Lu L, Zhu T, Shen Y, et al.
Stress relaxation and the structure size-dependence of plastic deformation in nanotwinned copper
[J]. Acta Materialia, 2009, 57(17): 5165
DOIURL [本文引用: 1]
[26]
Zhang Y, Tao N R, Lu K.
Effect of stacking-fault energy on deformation twin thickness in Cu-Al alloys
[J]. Scripta Materialia, 2009, 60(4): 211
DOIURL [本文引用: 1]
[27]
Wang P, Guo A M, Hou Q Y, et al.
Properties and deformation mechanism of aged Fe-Mn-Al-C steel
[J]. Chinese Journal of Materials Research, 2021, 35(3): 184
[本文引用: 1]
王 萍, 郭愛民, 侯清宇 等.
時(shí)效態(tài)Fe-Mn-Al-C鋼的性能和變形機(jī)制
[J]. 材料研究學(xué)報(bào), 2021, 35(3): 184
[本文引用: 1]
[28]
Chen A, Liu J, Wang H, et al.
Gradient twinned 304 stainless steels for high strength and high ductility
[J]. Materials Science and Engineering: A, 2016, 667: 179
DOIURL [本文引用: 1]
[29]
Huang M, Xu C, Fan G, et al.
Role of layered structure in ductility improvement of layered Ti-Al metal composite
[J]. Acta Materialia, 2018, 153: 235
DOIURL [本文引用: 1]
[30]
Yang J, Xu L, Gao H, et al.
Effect of global constraint on the mechanical behavior of gradient materials
[J]. Materials Science and Engineering: A, 2021, 826
[本文引用: 3]
The cleavage strength of polycrystals
1
1953
聲明:
“梯度結(jié)構(gòu)銅鋁合金的室溫加工硬化行為” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)