商用石墨陽(yáng)極的理論容量有限(372 mAh/g)和嵌鋰電位較低,已經(jīng)不能滿足新型鋰離子電池(LIBs)的需求
因此,開發(fā)和制備具有更高容量和安全性的新型
負(fù)極材料(如Si、Ge、Sn、SnO2、Fe2O3、GeO2、MnO2和MoP等)取代石墨極為迫切[1]
SnO2具有理論容量高(780 mAh/g)、低毒性和低成本的優(yōu)點(diǎn),是一種很有前途的負(fù)極材料[2~4]
但是,在脫鋰/嵌鋰過(guò)程中SnO2較大的體積變化引起顆粒粉化和聚集,使純SnO2負(fù)極的倍率能力和循環(huán)性能降低[5,6]
盡管如此,設(shè)計(jì)和制備納米SnO2@C
復(fù)合材料可提高其倍率性能和循環(huán)性能,因?yàn)樘坎牧峡商岣唠姌O的導(dǎo)電性,而納米級(jí)尺寸可縮短離子和電子的傳輸路徑,從而緩解SnO2在長(zhǎng)期循環(huán)過(guò)程中體積變化的影響[7~10]
常見的炭基材料,包括非晶無(wú)定形炭、炭納米管和
石墨烯等
以炭材料為基體可制備出不同形貌的SnO2/C復(fù)合材料,如SnO2/C納米纖維[11]、SnO2/C納米孔炭微球[12]、SnO2/核殼結(jié)構(gòu)微球[13]、蜂巢納米片結(jié)構(gòu)的SnO2/石墨炭復(fù)合物[14]等
這些材料不僅儲(chǔ)鋰性能較高,在充放電過(guò)程中很少發(fā)生團(tuán)聚,而且首次充放電效率也較高,可逆放電容量均高于純納米氧化錫,具有良好的循環(huán)性能
目前存在的問(wèn)題有:(1)最常用的炭基材料
碳納米管和石墨烯[15~18],其理論儲(chǔ)鋰容量遠(yuǎn)低于錫氧化物,因此較高比例的炭影響復(fù)合材料的容量;若炭的比例過(guò)低則不能為錫氧化物提供穩(wěn)定的生長(zhǎng)網(wǎng)絡(luò);(2)石墨烯基體的成本較高,石墨烯片強(qiáng)烈的π-π堆積效應(yīng)使其在循環(huán)過(guò)程中團(tuán)聚,影響復(fù)合材料的循環(huán)性能;(3)兩者較高的成本不利于大規(guī)模制備SnO2@C
糖類炭材料熱解后形成無(wú)定型的硬炭,其結(jié)構(gòu)優(yōu)勢(shì)使其理論容量為石墨材料的兩倍(782 mAh/g)[19]
圖1給出了近年來(lái)SnO2基鋰離子電池陽(yáng)極材料的循環(huán)次數(shù)和容量[20]
鑒于此,本文以兩種常見的糖類前驅(qū)物[C6H10O5]n葡萄糖(n=1)與淀粉(n>20)為碳源材料用簡(jiǎn)單的一步水熱法來(lái)制備SnO2@C復(fù)合材料,探討以硬炭為基體制備高容量、高倍率SnO2@C材料的可行性
圖1
圖1近年來(lái)SnO2基鋰離子電池陽(yáng)極材料的循環(huán)次數(shù)和容量報(bào)道[20]
Fig.1Capacities and cycle numbers of SnO2-based materials as anodes for LIBs reported in the recent literature[20]
1 實(shí)驗(yàn)方法1.1 試樣的制備
將1 g糖類前驅(qū)體和3.24 g SnCl4·5H2O溶解到80 mL去離子水中并將得到的溶液轉(zhuǎn)入100 mL水熱反應(yīng)釜,將溫度升高到180℃靜置12 h后隨爐冷卻
釜中的溶液變?yōu)樽厣?,?nèi)有黑褐色沉淀物
在真空抽濾器中用去離子水對(duì)沉淀物進(jìn)行充分洗滌和抽濾直至變成中性
在80℃干燥箱中將沉淀物烘干后再轉(zhuǎn)入真空管式爐,通入氬氣氣氛后在300℃下預(yù)分解2 h,然后在500℃燒結(jié)5 h,得到最終產(chǎn)品
將以葡萄糖為前驅(qū)體的試樣命名為TOC-G,以淀粉為前驅(qū)體的試樣命名為TOC-S
1.2 電極的制備
取質(zhì)量比為8:1:1的電極材料、Super P和海藻酸鈉
將粘結(jié)劑海藻酸鈉溶解在去離子水中,再加入混合好的電極材料與導(dǎo)電劑Super P,將其均勻涂布在Cu箔上
將其烘干后沖制成直徑為14 mm的電池正極片
以鋰片為對(duì)電極,在Ar保護(hù)氣氛的手套箱中裝配成2016型扣式電池
使用的隔膜為Celguard2400,電解液為1.3 mol/L LiPF6的EC/DMC(1:1)溶液
1.3 性能表征
用Bruke D8 ADVANCE X射線衍射儀進(jìn)行XRD分析;用Hitachi SU8220掃描電鏡和FEI Tecnai G2透射電鏡分析復(fù)合材料的形貌;用Micromeritics ASAP2020分析儀進(jìn)行N2吸脫附分析和孔徑分析;用Thermofisher Escalab 250Xi X射線光電子能譜儀測(cè)試XPS譜;在LAND-CT2001A電池測(cè)試系統(tǒng)上進(jìn)行恒電流充放電測(cè)試;使用CHI660C型
電化學(xué)工作站進(jìn)行EIS與CV分析
2 結(jié)果與討論2.1 元素分析與孔徑分布
圖2給出了兩種試樣的XRD圖譜,可見所有衍射峰與金紅石型SnO2完全吻合(PDF #41-1445),屬于空間群P42/mnm,a=b=0.4738 nm,c=0.3187 nm,晶胞體積0.716 nm3
兩個(gè)最強(qiáng)的主峰(26.4°與34.0°)對(duì)應(yīng)SnO2的(110)與(101)晶面,晶面間距分別為0.33 nm與0.26 nm
使用Jade軟件分析發(fā)現(xiàn),兩主峰的峰強(qiáng)之比分別為91.8:100與71.6:100,其原因是葡萄糖熱解炭與淀粉熱解炭的結(jié)晶程度不同
碳的主要衍射峰位于26.6°,可見TOC-G的XRD圖譜上疊加了更強(qiáng)的碳衍射峰,即葡萄糖熱解硬炭比淀粉熱解硬炭的結(jié)晶度和有序度更高,導(dǎo)電性能更好
圖2
圖2TOC-G和TOC-S的XRD圖譜
Fig.2XRD patterns of TOC-G and TOC-S
圖3a給出了TOC-G與TOC-S的紅外光譜,用于分析分子中含有的化學(xué)鍵或官能團(tuán)信息
1162 cm-1處的尖銳峰對(duì)應(yīng)-C-OH基團(tuán)中的彈性拉伸,2957與3470 cm-1處的寬峰對(duì)應(yīng)-COOH與-OH基團(tuán)的振動(dòng),這些官能團(tuán)在電沉積過(guò)程中為SnO2納米顆粒的附著提供缺陷位置[21]
含氧基團(tuán)將Sn4+氧化為SnO2晶核并在500℃結(jié)晶生長(zhǎng)為SnO2納米顆粒,但它與Li+發(fā)生不可逆結(jié)合而影響復(fù)合材料的首次充放電效率
1280和1630 cm-1處的峰為C-C與C=C的拉伸鍵,分別代表sp3雜化與sp2雜化
紅外光譜表明,淀粉熱解后形成的炭以sp3鍵合為主,也有部分炭原子以sp2方式互相鍵合;而葡萄糖糖熱解炭中sp2的比例非常少,表明葡萄糖熱解炭的有序程度相對(duì)更高,導(dǎo)電性更好
這在兩種試樣的HRTEM照片中也可看出
圖3
圖3試樣的紅外光譜(a)、N2吸脫附曲線和孔徑分布(b)
Fig.3FTIR patterns (a), N2 adsorption/desorption curve and pore distribution (b)
圖3b給出了TOC-G與TOC-S的N2吸脫附曲線和孔徑分布(>10 nm的孔很少,圖中沒(méi)有),兩者的比表面積分別為280.3 m2/g和348.0 m2/g
兩者的吸脫附曲線均為典型的I型曲線(微孔型),微孔較多的原因是微孔內(nèi)的強(qiáng)勢(shì)吸附使低壓端靠近Y軸
中壓端多為N2在介孔孔道內(nèi)的冷凝積聚
圖中可見中壓端的N2吸附量變化不大,說(shuō)明兩種材料中介孔比例都很少,以微孔為主,其中葡萄糖熱解炭幾乎沒(méi)有介孔
高壓端的上揚(yáng)程度可用來(lái)判斷粒徑的均勻程度,上揚(yáng)程度越高則粒徑越不均勻
從孔徑分布圖可以看出,TOC-G的孔類型為直徑0.8 nm左右的超微孔,而TOC-S則主要為直徑1~2 nm的微孔以及少量的介孔
微孔的數(shù)量影響電極材料的平臺(tái)容量,圖6中的充放電曲線也體現(xiàn)了這一點(diǎn)[22]
圖4
圖4TOC-G(a)和TOC-S(b)的TEM和HRTEM照片
Fig.4TEM and HRTEM images of TOC-G (a) and TOC-S (b)
圖5
圖5試樣的循環(huán)性能(a)和倍率性能(b)
Fig.5Cycle (a) and rate (b) performance of samples
圖6
圖6TOC-G 和TOC-S 的充放電曲線以及鋰離子在炭基體中的插層和吸附示意圖
Fig.6Charge/discharge curve of TOC-G (a) and TOC-S (b), sketch map of Li+ insertion and absorption in carbon matrix (c)
2.2 微觀結(jié)構(gòu)分析
圖4給出了復(fù)合材料的TEM與HRTEM圖譜
可以看出,兩種試樣均為團(tuán)絮狀結(jié)構(gòu),SnO2顆粒與熱解炭之間沒(méi)有明確的界限
用DigitalMicrograph透射電鏡分析軟件分析HRTEM照片,發(fā)現(xiàn)主要存在0.26 nm與0.33 nm兩種晶面間距,XRD數(shù)據(jù)表明其對(duì)應(yīng)于SnO2的(101)與(110)晶面
這表明,HRTEM圖譜中球形的、直徑5 nm左右的顆粒為SnO2納米點(diǎn),周圍包裹的無(wú)定型結(jié)構(gòu)即為炭基體
兩種試樣的差別在于TOC-G的SnO2納米點(diǎn)粒徑稍小
5點(diǎn)測(cè)量的平均值表明,TOC-G的平均粒徑為4.74 nm,TOC-S為5.62 nm
用作
鋰離子電池負(fù)極材料,SnO2具有高容量、低成本的優(yōu)勢(shì),但是它在循環(huán)過(guò)程中體積膨脹引起的粉化和破碎使其循環(huán)性能極差,達(dá)不到使用要求
本文使用的糖類前驅(qū)體熱解產(chǎn)生的炭基體起物理緩沖作用,而且粒徑極小的SnO2納米點(diǎn)具有更高的比表面積,可增加鋰/鈉離子進(jìn)入活性物質(zhì)的途徑,縮短鋰離子的傳輸路徑,這兩者協(xié)同作用能調(diào)節(jié)充放電過(guò)程中活性SnO2材料的體積膨脹,從而提高快速充放電能力與循環(huán)性能
2.3 電化學(xué)性能分析
以TOC-G和TOC-S為負(fù)極裝配的CR2016扣式電池其循環(huán)性能和倍率性能,如圖5a所示
可以看出,200次循環(huán)后(電流密度200 mA/g)TOC-G的放電比容量由1099.5 mAh/g降至732.9 mAh/g,TOC-S的放電比容量由948.6 mAh/g降至509 mAh/g,容量保持率分別為66.6%和53.8%
前文的分析表明,以葡萄糖為炭前驅(qū)體的TOC-G試樣其炭基體的有序化程度更高,SnO2納米點(diǎn)的粒徑更小,因此鋰離子在顆粒中的傳輸更快,SnO2的體積膨脹效應(yīng)更小,因此具有更好的循環(huán)性能
純SnO2前50次循環(huán)容量保持率低于50%,178次循環(huán)后容量衰減為零[22]
Zhang等[24]制備的SnO2/石墨烯復(fù)合物循環(huán)100次后容量保持率約為60%,其他文獻(xiàn)的數(shù)據(jù)略低[25, 27]
試樣的倍率性能如圖5b所示,可見前10個(gè)循環(huán)衰減明顯,這是固態(tài)電解質(zhì)膜(SEI)的形成以及Li+與含氧基團(tuán)的不可逆反應(yīng)造成的
在隨后的循環(huán)中容量的保持率較好,電流密度達(dá)到2 A/g時(shí)容量大于400 mAh/g,且TOC-G的容量略高于TOC-S
在此電流密度下一次充放電時(shí)間約為10 min,即充放電倍率為12C,已經(jīng)遠(yuǎn)高于目前對(duì)商用鋰離子電池高倍率充放電的要求(5C)
本文負(fù)極材料電化學(xué)性能的提高得益于炭材料充當(dāng)了錨定和分離SnO2納米粒子的主體,均勻致密的碳基體緩沖了SnO2在鋰/脫鋰過(guò)程中的體積膨脹,促進(jìn)了電子的傳輸,穩(wěn)定了電極結(jié)構(gòu);其次,SnO2顆粒納米化使鋰離子和電子轉(zhuǎn)移距離較短,Sn/Li2O界面間的互擴(kuò)散動(dòng)力學(xué)加強(qiáng),從而提高了電化學(xué)反應(yīng)的可逆性,提高了循環(huán)性能
圖6a、b給出了兩種試樣不同循環(huán)次數(shù)的充放電曲線,其中加粗線為首次充放電曲線
由于SEI的形成和Li+與含氧基團(tuán)的不可逆反應(yīng),兩者的首次庫(kù)倫效率(ICE)都較低,分別為66.5%與64.5%
首次庫(kù)倫效率與負(fù)極材料的燒結(jié)溫度相關(guān),燒結(jié)溫度高于900℃后炭氧鍵斷裂使大量含氧基團(tuán)消失,使首次庫(kù)倫效率明顯提高[28]
但是溫度高于700℃時(shí)SnO2被炭還原為單質(zhì)[29, 30],在充放電過(guò)程中體積的膨脹更為嚴(yán)重,因此本文選擇的熱解溫度為500℃
文獻(xiàn)[30]表明,在充放電曲線的斜坡區(qū)域代表Sn的合金化反應(yīng)與鋰離子在碳層中的插層
插入/脫出電勢(shì)隨著Li+含量的增加而降低,因而形成斜坡;平臺(tái)區(qū)域代表Li+在微孔中的脫嵌過(guò)程,低電位平臺(tái)可以歸因于Li+吸附到隨機(jī)堆積的碳層之間的納米孔隙中
Li+被吸附到化學(xué)勢(shì)接近其本身的位置從而其電位接近0 V(圖6c)
隨著循環(huán)次數(shù)的增加平臺(tái)容量逐漸變少,尤其是TOC-S第200次循環(huán)時(shí)平臺(tái)容量幾乎為0
這也是TOC-S的循環(huán)性能不如TOC-G的原因
由孔徑分布曲線可見,TOC-S的微孔直徑大于TOC-G而能吸附更多的Li+
可以推測(cè),孔道深處吸附的Li+會(huì)形成團(tuán)簇,且因傳輸距離更遠(yuǎn)而逐漸失去電化學(xué)活性,造成容量的損失
圖7給出了兩種試樣的循環(huán)伏安曲線,掃描速率為0.03 mV/s,曲線上不同峰位所代表的電化學(xué)反應(yīng)如圖上的標(biāo)識(shí)
在首次CV曲線上,0.6~0.8 V之間的兩個(gè)明顯的陽(yáng)極峰對(duì)應(yīng)SEI膜的形成和部分不可逆反應(yīng)(標(biāo)識(shí)①);0 V附近的陽(yáng)極峰代表Sn與Li+的可逆反應(yīng)(Sn+xLi++xe-→LixSn(0≤x≤4.4))和Li+在炭層中的插入(xLi++C+xe-→LixC)(標(biāo)識(shí)②)
在SnO2的放電過(guò)程中鋰先與氧結(jié)合形成無(wú)定形的Li2O而金屬錫被還原出來(lái)分散在無(wú)定型的Li2O網(wǎng)格中,無(wú)定型的網(wǎng)格起緩沖介質(zhì)的作用;隨后鋰與錫發(fā)生合金化反應(yīng),生成LixSn;標(biāo)識(shí)③、④、⑤則代表SnO2電極的充電電化學(xué)反應(yīng):③對(duì)應(yīng)完全可逆反應(yīng)LixSn→Sn+xLi++xe-,④、⑤對(duì)應(yīng)Sn+2Li2O→SnO2+4Li++4e-,但這個(gè)反應(yīng)的可逆性尚有爭(zhēng)議[32, 34]
有研究表明,對(duì)于微米級(jí)SnO2此反應(yīng)是不可逆的,因此理論容量約為780 mAh/g;而納米級(jí)SnO2則是可逆或部分可逆的,理論容量最高可達(dá)1494 mAh/g
本文中的循環(huán)伏安曲線出現(xiàn)明顯的寬峰,說(shuō)明材料在此反應(yīng)上確實(shí)是可逆的,且TOC-G的可逆性更好
標(biāo)識(shí)⑥代表Li+在碳層中的脫出過(guò)程,也是完全可逆的
圖7
圖7TOC-G試樣(a)和TOC-S試樣(b)的循環(huán)伏安曲線(前三次循環(huán)和第100次循環(huán))
Fig.7Cyclic voltammetry curves (the first three cycles and the 100th cycle) (a) TOC-G, (b) TOC-S
3 結(jié)論
以糖類有機(jī)物葡萄糖和淀粉為炭前驅(qū)體,用一種簡(jiǎn)單方法可合成SnO2@C復(fù)合物TOC-G和TOC-S
復(fù)合物的微觀結(jié)構(gòu)是,SnO2納米點(diǎn)嵌在團(tuán)絮狀的炭基體上形成了穩(wěn)定的復(fù)合結(jié)構(gòu)
兩種復(fù)合物的表面均有豐富的微孔,其中TOC-G上的微孔直徑小于0.8 nm,TOC-S上的微孔以1~2 nm為主
微孔較大時(shí),鋰離子容易在微孔中發(fā)生不可逆沉積從而影響循環(huán)性能
TOC-G的循環(huán)性能略優(yōu)于TOC-S,200次循環(huán)后的容量保持率為66.6%,倍率性能也較好,在2 A/g的大電流密度下其容量約為435 mAh/g
參考文獻(xiàn)
View Option 原文順序文獻(xiàn)年度倒序文中引用次數(shù)倒序被引期刊影響因子
[1]
Xiao Y D, Jin X Z, Huang H, et al.
Preparation and electrochemical behavior of mop nanoparticles as anode material for lithium-ion batteries
[J].Chin. J. Mater. Res., 2019, 33: 65
[本文引用: 1]
(
肖雅丹, 靳曉哲, 黃昊等.
MoP納米粒子鋰離子電池負(fù)極材料的制備及其電化學(xué)性能
[J]. 材料研究學(xué)報(bào), 2019, 33: 65)
DOIURL [本文引用: 1]
用直流電弧等離子體法制備
金屬鉬納米粉體再使其與赤磷發(fā)生固相反應(yīng),用兩步法制備出磷化鉬納米粒子
使用X射線衍射(XRD)和透射電鏡(TEM)等手段表征磷化鉬納米粒子的結(jié)構(gòu)并進(jìn)行了電化學(xué)性能測(cè)試
結(jié)果表明,MoP納米粒子呈球狀,粒徑為20~50 nm;在電流密度為100 mA/g的條件下MoP納米粒子負(fù)極材料的首次放電比容量達(dá)到746 mAh/g,50次循環(huán)后放電比容量為241.9 mAh/g;電流密度為2000 mA/g時(shí)放電比容量為99.90 mAh/g,電流密度恢復(fù)到100 mA/g其放電比容量仍然保持247.60 mAh/g
用作鋰離子電池的負(fù)極材料,MoP納米粒子具有優(yōu)異的穩(wěn)定性和可逆性
[2]
Idota Y, Kubota T, Matsufuji A, et al.
Tin-based amorphous oxide: a high-capacity lithium-ion-storage material
[J]. Science, 1997, 276: 1395
DOIURL [本文引用: 1]
[3]
Wang C, Zhou Y, Ge M Y, et al.
Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity
[J]. J. Am. Chem. Soc., 2010, 132: 46
DOIURLPMID " />
We report the creation of a nanoscale electrochemical device inside a transmission electron microscope--consisting of a single tin dioxide (SnO(2)) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO(2)) cathode--and the in situ observation of the lithiation of the SnO(2) nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a
[6]
Wang W C, Li P H, Fu Y B, et al.
The preparation of double-void-space SnO2/carbon composite as high-capacity anode materials for lithium-ion batteries
[J]. J. Power Sources, 2013, 238: 464
[本文引用: 1]
[7]
Zhao Y, Wei C, Sun S N, Wang L P, et al.
Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage
[J]. Adv. Sci., 2015, 2: 1500097
[本文引用: 1]
[8]
Ju H S, Hong Y J, Cho J S, et al.
Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries
[J]. Carbon, 2016, 100: 137
[9]
Zhang X Q, Huang X X, Geng X, et al.
Flexible anodes with carbonized cotton covered by graphene/SnO2 for advanced lithium-ion batteries
[J]. J. Electroanal. Chem., 2017, 794: 15
[10]
Lu J, Peng Q, Li Y D.
Synthesis of iron oxide-tin oxide-carbon composite nanobelts and their applications in lithium-ion batteries
[J].Chin. Sci. Bull., 2013, 58: 3213
[本文引用: 1]
(
陸君, 彭卿, 李亞棟.
氧化鐵-氧化錫-碳復(fù)合納米帶的合成及其在
鋰電池中的應(yīng)用
[J]. 科學(xué)通報(bào), 2013, 58: 3213)
[本文引用: 1]
[11]
Yang Z X, Du G D, Guo Z P, et al.
Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties
[J]. J. Mater. Res., 2010, 25: 1516
[本文引用: 1]
[12]
Lin Y S, Duh J G, Hung M H.
Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery
[J]. J. Phys. Chem., 2010, 114C: 13136
[本文引用: 1]
[13]
Li H, Zhang B, Ou X, et al.
Cover feature: core-shell structure of SnO2@c/PEDOT: PSS microspheres with dual protection layers for enhanced lithium storage performance (ChemElectroChem 8/2019)
[J]. ChemElectroChem, 2019, 6: 2121
DOIURL [本文引用: 1]
[14]
Wang H K, Wang J K, Cao D X, et al.
Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance
[J]. J. Mater. Chem., 2017, 5A: 6817
[本文引用: 1]
[15]
Li S, Yang Z X, Guo T L, et al.
Composite Nano-materials with 1-D core/shell architecture synthesized in one-pot hydrothemal method and its Li-storage properties
[J].Chin. J. Vac. Sci. Technnol., 2013, 33: 1260
[本文引用: 1]
(
李松, 楊尊先, 郭太良等.
一步水熱法合成CNTs/SnO2@C一維殼核結(jié)構(gòu)復(fù)合
納米材料及其鋰存儲(chǔ)特性研究
[J]. 真空科學(xué)與技術(shù)學(xué)報(bào), 2013, 33: 1260)
[本文引用: 1]
[16]
Wu P, Zhang D H, Yu J, et al.
CNTs@SnO2@C coaxial nanocables with highly reversible lithium storage
[J]. J. Phys. Chem., 2010, 114C: 22535
[17]
Yu Z J, Wang Y L, Deng H G, et al.
Synthesis and electrochemical performance of SnO2/Graphene anode material for lithium ion batteries
[J].J. Inorg. Mater., 2013, 28: 515
(
虞禎君, 王艷莉, 鄧洪貴等.
SnO2/石墨烯鋰離子電池負(fù)極材料的制備及其電化學(xué)行為研究
[J]. 無(wú)機(jī)材料學(xué)報(bào), 2013, 28: 515)
[18]
Wang X Y, Zhou X F, Yao K, et al.
A SnO2/graphene composite as a high stability electrode for lithium ion batteries
[J]. Carbon, 2011, 49: 133
DOIURL [本文引用: 1]
[19]
Dahn J R, Xing W, Gao Y.
The “falling cards model” for the structure of microporous carbons
[J]. Carbon, 1997, 35: 825
[本文引用: 1]
[20]
Zhao S Q, Sewell C D, Liu R P, et al.
SnO2 as advanced anode of alkali-ion batteries: inhibiting sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility
[J]. Adv. Energy Mater. 2020, 10: 1902657-98
[本文引用: 3]
[21]
Dirican M, Lu Y, Ge Y Q, et al.
Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material
[J]. ACS Appl. Mater. Interfaces, 2015, 7: 18387
DOIURLPMID [本文引用: 1] " />
Monodisperse ultrathin SnO(2) nanorods on nitrogen-doped graphene were firstly synthesized by a facile one-step hydrothermal strategy. The uniformed composites with high nitrogen content and ultrathin SnO(2) nanorods of 2.5-4.0 nm in diameter and 10-15 nm in length show a high reversible specific capacity, superior rate capability and outstanding cycling stability (803 mA h g(-)(1)) as anode materials for lithium ion batteries, owing to the synergistic effect between GS and SnO(2) and nitrogen-doping, which can greatly decrease the energy barrier for Li penetrating the pyridinic defects and improve the electronic structures. This work opens the door to prepare metal oxide/GS-N composites with superior lithium storage properties and engineering of graphene composites for advanced energy storage.
[26]
Wang L, Wang D, Dong Z H, et al.
Interface chemistry engineering for stable cycling of reduced go/SnO2 nanocomposites for lithium ion battery
[J]. Nano Lett., 2013, 13: 1711
DOIURLPMID class="outline_tb" " />
用直流電弧等離子體法制備金屬鉬納米粉體再使其與赤磷發(fā)生固相反應(yīng),用兩步法制備出磷化鉬納米粒子
使用X射線衍射(XRD)和透射電鏡(TEM)等手段表征磷化鉬納米粒子的結(jié)構(gòu)并進(jìn)行了電化學(xué)性能測(cè)試
結(jié)果表明,MoP納米粒子呈球狀,粒徑為20~50 nm;在電流密度為100 mA/g的條件下MoP納米粒子負(fù)極材料的首次放電比容量達(dá)到746 mAh/g,50次循環(huán)后放電比容量為241.9 mAh/g;電流密度為2000 mA/g時(shí)放電比容量為99.90 mAh/g,電流密度恢復(fù)到100 mA/g其放電比容量仍然保持247.60 mAh/g
用作鋰離子電池的負(fù)極材料,MoP納米粒子具有優(yōu)異的穩(wěn)定性和可逆性
[2]
Idota Y, Kubota T, Matsufuji A, et al.
Tin-based amorphous oxide: a high-capacity lithium-ion-storage material
[J]. Science, 1997, 276: 1395
[3]
Wang C, Zhou Y, Ge M Y, et al.
Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity
[J]. J. Am. Chem. Soc., 2010, 132: 46
PMID " />
We report the creation of a nanoscale electrochemical device inside a transmission electron microscope--consisting of a single tin dioxide (SnO(2)) nanowire anode, an ionic liquid electrolyte, and a bulk lithium cobalt dioxide (LiCoO(2)) cathode--and the in situ observation of the lithiation of the SnO(2) nanowire during electrochemical charging. Upon charging, a reaction front propagated progressively along the nanowire, causing the nanowire to swell, elongate, and spiral. The reaction front is a
[6]
Wang W C, Li P H, Fu Y B, et al.
The preparation of double-void-space SnO2/carbon composite as high-capacity anode materials for lithium-ion batteries
[J]. J. Power Sources, 2013, 238: 464
[7]
Zhao Y, Wei C, Sun S N, Wang L P, et al.
Reserving interior void space for volume change accommodation: An example of cable-like MWNTs@SnO2@C composite for superior lithium and sodium storage
[J]. Adv. Sci., 2015, 2: 1500097
[8]
Ju H S, Hong Y J, Cho J S, et al.
Strategy for yolk-shell structured metal oxide-carbon composite powders and their electrochemical properties for lithium-ion batteries
[J]. Carbon, 2016, 100: 137
[9]
Zhang X Q, Huang X X, Geng X, et al.
Flexible anodes with carbonized cotton covered by graphene/SnO2 for advanced lithium-ion batteries
[J]. J. Electroanal. Chem., 2017, 794: 15
[10]
Lu J, Peng Q, Li Y D.
Synthesis of iron oxide-tin oxide-carbon composite nanobelts and their applications in lithium-ion batteries
[J].Chin. Sci. Bull., 2013, 58: 3213
(
陸君, 彭卿, 李亞棟.
氧化鐵-氧化錫-碳復(fù)合納米帶的合成及其在鋰電池中的應(yīng)用
[J]. 科學(xué)通報(bào), 2013, 58: 3213)
[11]
Yang Z X, Du G D, Guo Z P, et al.
Easy preparation of SnO2@carbon composite nanofibers with improved lithium ion storage properties
[J]. J. Mater. Res., 2010, 25: 1516
[12]
Lin Y S, Duh J G, Hung M H.
Shell-by-shell synthesis and applications of carbon-coated SnO2 hollow nanospheres in lithium-ion battery
[J]. J. Phys. Chem., 2010, 114C: 13136
[13]
Li H, Zhang B, Ou X, et al.
Cover feature: core-shell structure of SnO2@c/PEDOT: PSS microspheres with dual protection layers for enhanced lithium storage performance (ChemElectroChem 8/2019)
[J]. ChemElectroChem, 2019, 6: 2121
[14]
Wang H K, Wang J K, Cao D X, et al.
Honeycomb-like carbon nanoflakes as a host for SnO2 nanoparticles allowing enhanced lithium storage performance
[J]. J. Mater. Chem., 2017, 5A: 6817
[15]
Li S, Yang Z X, Guo T L, et al.
Composite Nano-materials with 1-D core/shell architecture synthesized in one-pot hydrothemal method and its Li-storage properties
[J].Chin. J. Vac. Sci. Technnol., 2013, 33: 1260
(
李松, 楊尊先, 郭太良等.
一步水熱法合成CNTs/SnO2@C一維殼核結(jié)構(gòu)復(fù)合納米材料及其鋰存儲(chǔ)特性研究
[J]. 真空科學(xué)與技術(shù)學(xué)報(bào), 2013, 33: 1260)
[16]
Wu P, Zhang D H, Yu J, et al.
CNTs@SnO2@C coaxial nanocables with highly reversible lithium storage
[J]. J. Phys. Chem., 2010, 114C: 22535
[17]
Yu Z J, Wang Y L, Deng H G, et al.
Synthesis and electrochemical performance of SnO2/Graphene anode material for lithium ion batteries
[J].J. Inorg. Mater., 2013, 28: 515
(
虞禎君, 王艷莉, 鄧洪貴等.
SnO2/石墨烯鋰離子電池負(fù)極材料的制備及其電化學(xué)行為研究
[J]. 無(wú)機(jī)材料學(xué)報(bào), 2013, 28: 515)
[18]
Wang X Y, Zhou X F, Yao K, et al.
A SnO2/graphene composite as a high stability electrode for lithium ion batteries
[J]. Carbon, 2011, 49: 133
[19]
Dahn J R, Xing W, Gao Y.
The “falling cards model” for the structure of microporous carbons
[J]. Carbon, 1997, 35: 825
[20]
Zhao S Q, Sewell C D, Liu R P, et al.
SnO2 as advanced anode of alkali-ion batteries: inhibiting sn coarsening by crafting robust physical barriers, void boundaries, and heterophase interfaces for superior electrochemical reaction reversibility
[J]. Adv. Energy Mater. 2020, 10: 1902657-98
[本文引用: 3]
[21]
Dirican M, Lu Y, Ge Y Q, et al.
Carbon-confined SnO2-electrodeposited porous carbon nanofiber composite as high-capacity sodium-ion battery anode material
[J]. ACS Appl. Mater. Interfaces, 2015, 7: 18387
PMID " />
Monodisperse ultrathin SnO(2) nanorods on nitrogen-doped graphene were firstly synthesized by a facile one-step hydrothermal strategy. The uniformed composites with high nitrogen content and ultrathin SnO(2) nanorods of 2.5-4.0 nm in diameter and 10-15 nm in length show a high reversible specific capacity, superior rate capability and outstanding cycling stability (803 mA h g(-)(1)) as anode materials for lithium ion batteries, owing to the synergistic effect between GS and SnO(2) and nitrogen-doping, which can greatly decrease the energy barrier for Li penetrating the pyridinic defects and improve the electronic structures. This work opens the door to prepare metal oxide/GS-N composites with superior lithium storage properties and engineering of graphene composites for advanced energy storage.
[26]
Wang L, Wang D, Dong Z H, et al.
Interface chemistry engineering for stable cycling of reduced go/SnO2 nanocomposites for lithium ion battery
[J]. Nano Lett., 2013, 13: 1711
PMID
From the whole anode electrode of view, we report in this work a system-level strategy of fabrication of reduced graphene oxide (RGO)/SnO2 composite-based anode for lithium ion battery (LIB) to enhance the capacity and cyclic performance of SnO2-based electrode materials. RGO/SnO2 composite was first coated by a nanothick polydopamine (PD) layer and the PD-coated RGO/SnO2 composite was then cross-linked with poly(acrylic acid) (PAA) that was used as a binder to accomplish a whole anode electrode. The cross-link reaction between PAA and PD produced a robust network in the anode system to stabilize the whole anode during cycling. As a result, the designed anode exhibits an outstanding energy capacity up to 718 mAh/g at current density of 100 mA/g after 200 cycles and a good rate performance of 811, 700, 641, and 512 mAh/g at current density of 100, 250, 500, and 1000 mA/g, respectively. Fourier transform IR spectra confirm the formation of cross-link reaction and the stability of the robust network after long-term cycling. Our results indicate the importance of designing interfaces in anode system on achieving improved performance of electrode of LIBs.
[27]
Vinayan B P, Ramaprabhu S.
Facile synthesis of SnO2 nanoparticles dispersed nitrogen doped graphene anode material for ultrahigh capacity lithium ion battery applications
[J]. J. Mater. Chem., 2013, 1A: 3865
[28]
Li L F, Fan C L, Zeng B, et al.
Effect of pyrolysis temperature on lithium storage performance of pyrolitic-PVDF coated hard carbon derived from cellulose
[J]. Mater. Chem. Phys., 2020, 242: 122380
[29]
Lou X W, Deng D, Lee J Y, et al.
Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties
[J]. Chem. Mater., 2008, 20: 6562
[30]
Wang H Q, Zhang X H, Wen J B, et al.
Preparation of spherical Sn/SnO2/porous carbon composite materials as anode material for lithium-ion batteries
[J]. J Mater. Eng. Perform., 2015, 24: 1856
[本文引用: 2]
[31]
Stevens D A, Dahn J R.
High capacity anode materials for rechargeable sodium-ion batteriess
[J]. J. Electrochem. Soc., 2000, 147: 1271
[32]
Wang X, Cao X Q, Bourgeois L, et al.
N-doped graphene-SnO2 sandwich paper for high‐performance lithium-ion batteries
[J]. Adv. Funct. Mater., 2012, 22: 2682
[33]
Paek S M, Yoo E J, Honma I.
Enhanced cyclic performance and lithium storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure
[J]. Nano Lett., 2009, 9: 72
PMID
[34]
Zhang H X, Feng C, Zhai Y C, et al.
Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: a novel binder-free and high-capacity anode material for lithium-ion batteries
[J]. Adv. Mater., 2009, 21: 2299
MoP納米粒子鋰離子電池負(fù)極材料的制備及其電化學(xué)性能
1
2019
聲明:
“一步水熱法制備納米SnO2@C復(fù)合材料及其儲(chǔ)鋰性能研究” 該技術(shù)專利(論文)所有權(quán)利歸屬于技術(shù)(論文)所有人。僅供學(xué)習(xí)研究,如用于商業(yè)用途,請(qǐng)聯(lián)系該技術(shù)所有人。
我是此專利(論文)的發(fā)明人(作者)